Fabrication of Crosslinkable Hollow Fiber Membranes for Pervaporation Dehydration

Document Type : Research Paper


Central South University


Integrally-skinned asymmetric Polyetherimide/Poly (vinyl alcohol) (PEI/PVA) hollow fber membranes for pervaporation dehydration were fabricated by non-solvent induced phase inversion. PVA inside the PEI matrix could be crosslinked to provide membrane performance stability during long term operation. The effects of different PEI/PVA blend ratio, external coagulant type and flow rate, and crosslinking conditions on the membrane structure and the separation performance were investigated. Generally, hollow fbers using PEI/PVA blend are less selective than those of neat PEI, probably due to the defects evolved between PEI and PVA. The influence of coagulant type on membrane pervaporation performance was specifc to dope formulation; when using n-butanol as external coagulant, the higher the coagulant flow rate, the better the membrane separation performance. PVA crosslinking by maleic acid (MA) enhanced the membrane performance, obviously. PEI/PVA Hollow fbers formed using n-butanol as external coagulant obtained a separation factor of 28 after crosslinking, much better than 4.4 with the original one. The crosslinked membrane exhibited higher stability than the neat PEI membrane. The separation factor of the latter degraded by more than half after around 200 h operation. Finally, this work has provided a new approach for fabricating crosslinkable asymmetric membrane suitable for pervaporation dehydratio.

Graphical Abstract

Fabrication of Crosslinkable Hollow Fiber Membranes for Pervaporation Dehydration


• A new type of crosslinkable integrally-skinned asymmetric hollow fbers were
• The material for the hollow fbers is Polyetherimide/Polyvinyl alcohol blend.
• The external coagulant composition has influence on the hollow fber performance.
• Chemical crosslinking using maleic acid dissolved in water enhances the separation
factors of the hollow fbers.
• Chemical crosslinking was confrmed by FTIR and XPS analyses.


Main Subjects

[1] P. A. Kober, Pervaporation, perstillation and percrystallization, J. Membr. Sci. 100 (1995) 61-64.
[2] L. M. Vane, A review of pervaporation for product recovery from biomass fermentation processes, J. Chem. Technol. Biotechnol. 80 (2005) 603-629.
[3] P. D. Chapman, T. Oliveira, A. G. Livingston, Membranes for the dehydration of solvents by pervaporation, J. Membr. Sci., 318 (2008) 5-37.
[4] L. Y. Jiang, Y. Wang, T. S. Chung, Polyimides membranes for pervaporation and biofuels separation, Prog. Polym. Sci. 34 (2009) 1135-1160.
[5] M. She, S. H. Wang, Concentration of dilute flavor compounds by pervaporation: permeate pressure effect and boundary layer resistance modeling, J. Membr. Sci. 236 (2004) 193-202.
[6] Y. K. Ong, G. M. Shi, N. L. Le N L, Recent membrane development for pervaporation processes, Prog. Polym. Sci. 57 (2016) 1-31.
[7] L. Y. Jiang, T. S. Chung, Homogeneous polyimide/cyclodextrin composite membranes for pervaporation dehydration of isopropanol, J. Membr. Sci. 346 (2010) 45-58.
[8] R. Guo, X. Ma, C. Hu, Novel PVA–silica nanocomposite membrane for pervaporative dehydration of ethylene glycol aqueous solution, Polymer 48 (2007) 2939-2945.
[9] S. G. Adoor, B. Prathab, L. S. Manjeshwar, Mixed matrix membranes of sodium alginate and poly (vinyl alcohol) for pervaporation dehydration of isopropanol at different temperatures, Polymer 48 (2007) 5417-5430.
[10] P. Aptel, N. Challard, J. Cuny, Application of the pervaporation process to separate azeotropic mixtures, J. Membr. Sci., 1 (1976) 271-287.
[11] J. Zuo, T. S. Chung, Design and synthesis of a fluorosilane amine monomer for novel thin film composite membranes to dehydrate ethanol via pervaporation, J. Mater. Chem. A 1 (2013) 9814-9826.
[12] L. Y. Jiang, T. S. Chung, R. Rajagopalan, Dehydration of alcohols by pervaporation through polyimide Matrimid® asymmetric hollow fibers with various modifications, Chem. Eng. Sci. 63 (2008) 204-216.
[13] P. Sukitpaneenit, T. S. Chung, L. Y. Jiang, Modified pore-flow model for pervaporation mass transport in PVDF hollow fiber membranes for ethanol–water separation, J. Membr. Sci. 362 (2010) 393-406.
[14] W. C. Chao, S. H. Huang, Q. An, Novel interfacially-polymerized polyamide thin-film composite membranes: studies on characterization, pervaporation, and positron annihilation spectroscopy, Polymer 52 (2011) 2414-2421.
[15] A. Jonquières, R. Clément, P. Lochon, J. Néel, M. Dresch, B. Chrétien,  Industrial state-of-the-art of pervaporation and vapour permeation in the western countries,J. Membr. Sci. 2006 (2002) 87–117.
[16] Y. Wang, L. Y. Jiang, T. Matsuura, Investigation of the fundamental differences between polyamide-imide (PAI) and polyetherimide (PEI) membranes for isopropanol dehydration via pervaporation, J. Membr. Sci. 318 (2008) 217-226.
[17] R. X. Liu, X. Y. Qiao, T. S. Chung, The development of high performance 84 co-polyimide hollow fibers for pervaporation dehydration of isopropanol, Chem. Eng. Sci. 60 (2005) 6658–6673.
[18] L. Y. Jiang, T. S. Chung, R. Rajagopalan, Dehydration of alcohols by pervaporation through polyimide Matrimid asymmetric hollow fibers with various modifications, Chem. Eng. Sci. 63 (2008) 204–216.
[19] D. A. Devi, B. Smitha, S. Sridhar, Novel crosslinked chitosan/poly (vinylpyrrolidone) blend membranes for dehydrating tetrahydrofuran by the pervaporation technique, J. Membr. Sci. 280 (2006) 45-53.
[20] M. L. Gimenes, L. Liu, X. Feng, Sericin/poly (vinyl alcohol) blend membranes for pervaporation separation of ethanol/water mixtures, J, Membr. Sci. 295 (2007) 71-79.
[21] P. Kanti, K. Srigowri, J. Madhuri, Dehydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation, Sep. Purif. Technol. 40 (2004) 259-266.
[22] L. Lin, Y. Kong, K. Xie, Polyethylene glycol/polyurethane blend membranes for gasoline desulphurization by pervaporation technique, Sep. Purif. Technol. 61 (2008) 293-300.
[23] Y. Maruthi, H. Sudhakar, U. S. Rao, Blend Membranes of Sodium alginate and Soya protein for Pervaporation Dehydration of Isopropanol, Adv. Polym. Sci. Technol. 4 (2014) 12-21.
[24] L. L. Xia, C. L. Li, Y. Wang, In-situ crosslinked PVA/organosilica hybrid membranes for pervaporation separations, J. Membr. Sci. 498 (2016) 263-275.
[25] X. H. Zhang, Q. L. Liu, Y. Xiong, Pervaporation dehydration of ethyl acetate/ethanol/water azeotrope using chitosan/poly (vinyl pyrrolidone) blend membranes, J. Membr. Sci. 27 (2009) 274-280.
[26] J. Zhong, B. Yang, R. Chen, A computer simulation study on the diffusion and permeation of dimethylformamide/water mixtures through poly (vinyl alcohol)/poly (acrylic acid) blend membranes, Chem. Eng. Res. Des. 94 (2015) 681-690.
[27] K. Zhou, Q. G. Zhang, G. L. Han, Pervaporation of water–ethanol and methanol–MTBE mixtures using poly (vinyl alcohol)/cellulose acetate blended membranes, J. Membr. Sci. 448 (2013) 93-101.
[28] C. K. Yeom, S. H. Lee, J. M. Lee, Pervaporative permeations of homologous series of alcohol aqueous mixtures through a hydrophilic membrane, J. Appl. Polym. Sci. 79 (2001) 703–713.
[29] A. Svang-Ariyaskul, R. Y. M. Huang, P. L. Douglas, Blended chitosan and poly (vinyl alcohol) membranes for the pervaporation dehydration of isopropanol, J. Membr. Sci. 280 (2006) 815-823.
[30] J. Fu, J. L. Qiao, J. X. Ma, High stability of chemical crosslinked poly (vinyl alcohol)/polyvinylpyrrolidone alkaline solid electrolyte membrane, Acta Phys. -Chim. Sin. 26 (2010) 2975-2981.
[31] C. K. Yeom, K. H. Lee, Pervaporation separation of water-acetic acid mixtures through poly (vinyl alcohol) membranes crosslinked with glutaraldehyde, J. Membr. Sci. 109 (1996) 257-265.
[32] J. G. Jegal, K. H. Lee, Nanofiltration membranes based on poly(vinyl alcohol) and ionic polymers, J. Appl. Polym. Sci. 72 (1999) 1755–1762.
[33] H. M. Guan, T. S. Chung, Z. Huang, Poly (vinyl alcohol) multilayer mixed matrix membranes for the dehydration of ethanol–water mixture, J. Membr. Sci. 268 (2006) 113-122.
[34] J. W. Rhim, Y. K. Kim, Pervaporation separation of MTBE–methanol mixtures using cross-linked PVA membranes, J. Appl. Polym. Sci. 75 (2000) 1699–1707.
[35] E. de Souza Costa-Júnior, M. M. Pereira, H. S. Mansur, Properties and biocompatibility of chitosan films modified by blending with PVA and chemically crosslinked, J. Mater. Sci. - Mater. Med. 20 (2009) 553-561.
[36] R. Jayasekara, I. Harding, I. Bowater, Preparation, surface modification and characterisation of solution cast starch PVA blended films, Polym. Test. 23 (2004) 17-27.
[37] Y. T. Jia, J. Gong, X. H. Gu, Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method, Carbohyd. Polym. 67 (2007) 403-409.
[38] H. K. Yuan, J. Ren, X. H. Ma, Dehydration of ethyl acetate aqueous solution by pervaporation using PVA/PAN hollow fiber composite membrane, Desalination 280 (2011) 252-258.
[39] M. M. Teoh, T. S. Chung, K. Y. Wang, M. D. Guiver, Exploring Torlon/P84 co-polyamide-imide blended hollow fibers and their chemical cross-linking modifications for pervaporation dehydration of isopropanol, Sep. Purif. Technol. 61 (2008) 404–413.
[40] J. J. Shieh, T. S. Chung, Phase-Inversion Poly(ether imide) Membranes Prepared from Water-Miscible/Immiscible Mixture Solvents, Ind. Eng. Chem. Res. 38 (1999) 2650-2658.
[41] D. Wang, K. Li, W. K. Teo, Preparation and characterization of polyetherimide asymmetric hollow fiber membranes for gas separation, J. Membr. Sci. 138 (1998) 193-201.
[42] B. Kanjilal, I. Noshadi , J. R. McCutcheon, A. D. Asandei, R. S. Parnas, Allylcyclohexylamine functionalized siloxane polymer and its phase separated blend as pervaporation membranes for 1,3-propanediol enrichment from binary aqueous mixtures, J. Membr. Sci. 486 (2015) 59–70.
[43] L. Y. Jiang, Z. W. Song, Interfacial resistance of dual-layer asymmetric hollow fiber pervaporation membranes formed by co-extrusion, J. Polym. Res. 18 (2011) 2505-2514.
[44] J. M. Zhu, L. Y. Jiang, T. Matsuura, New insights into fabrication of hydrophobic/hydrophilic composite hollow fibers for direct contact membrane distillation, Chem. Eng. Sci. 137 (2015) 79-90.
[45] D. S. Kim, M. D. Guiver, S. Y. Nam, Preparation of ion exchange membranes for fuel cell based on crosslinked poly (vinyl alcohol) with poly (styrene sulfonic acid-co-maleic acid), J. Membr. Sci. 281 (2006) 156-162.
[46] J. W. Rhim, H. B. Park, C. S. Lee, Crosslinked poly (vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes, J. Membr. Sci. 238 (2004) 143-151.
[47] Z. W. Song, L. Y. Jiang, Optimization of morphology and performance of PVDF hollow fiber for direct contact membrane distillation using experimental design, Chem. Eng. Sci. 101 (2013) 130-143.
[48] F. Lipnizki, R. W. Field, Integration of vacuum and sweep gas pervaporation to recover organic compounds from wastewater, Sep. Purif. Technol. 22 (2001) 347-360.
[49] T. Miyazaki, Y. Takeda, S. Akane, Role of boric acid for a poly (vinyl alcohol) film as a cross-linking agent: Melting behaviors of the films with boric acid, Polymer, 51 (2010) 5539-5549.
[50] S. H. Mansur, R. L. Oréfice, A. A. P. Mansur, Characterization of poly (vinyl alcohol)/poly (ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy, Polymer 45 (2004) 7193-7202.
[51] D. Sek, B. Kaczmarczyk, E. Schab-Balcerzak, FTIR study of thermal cyclization processes in the synthesis of polyetherimidazopyrrolones, Polymer 40 (1999) 7303-7312.
[52] N. Peng, T. S. Chung, K. Y. Wang, Macrovoid evolution and critical factors to form macrovoid-free hollow fiber membranes, J. Membr. Sci. 318 (2008) 363-372.
[53] H. Zheng, Y. Du, J. Yu, Preparation and characterization of chitosan/poly (vinyl alcohol) blend fibers, J. Appl. Polym. Sci. 80 (2001) 2558-2565.
[54] M. Rajagopalan, J. H. Jeon, I. K. Oh, Electric-stimuli-responsive bending actuator based on sulfonated polyetherimide, Sens. Actuators B: Chem. 151 (2010) 198-204.
[55] A. J. Reuvers, C. A. Smolders, Formation of membranes by means of immersion precipitation: Part II. the mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water, J. Membr. Sci. 34 (1987) 67-86.
[56] A. J. Reuvers, C. A. Smolders, Formation of membranes by means of immersion precipitation: Part II. the mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water, J. Membr. Sci., 34 (1987) 67-86.
[57] S. Zereshki, A. Figoli, S. S. Madaeni, Pervaporation separation of MeOH/MTBE mixtures with modified PEEK membrane: Effect of operating conditions, J. Membr. Sci. 371 (2011) 1-9.
[58] J. Neel, Q.T. Nguyen, R. Clement, L. Le Blanc, Fractionation of a binary liquid mixture by continuous pervaporation, J. Membr. Sci. 15 (1983) 43.
[59] Q. T. Nguyen, L. L. Blanc, J. Neel, Preparation of membranes from polyacrylonitrile-polyvinylpyrrolidone blends and the study of their behaviour in the pervaporation of water-organic liquid mixtures, J. Membr. Sci. 22 (1985) 245-255.
[60] J. Mencarini Jr, R. Coppola, C. S. Slater, Separation of tetrahydrofuran from aqueous mixtures by pervaporation, Sep. Sci. .Technol. 29 (1994) 465-481.
[61] W. Y. Chiang, C. Y. Hsiao, Separation of liquid mixtures by using polymer membranes, V. Water-alcohol separation by pervaporation through poly (vinyl alcohol)-graft-poly(styrene-co-maleic anhydride) membranes, Angew. Makromol. Chem. 219 (1994) 169-184.
[62] W. Y. Chiang, C. C. Huang, Separation of liquid mixtures by using polymer membranes. IV. Water-alcohol separation by pervaporation through modified acrylonitrile grafted poly (vinyl alcohol) copolymer (PVA-G-AN) membranes, J. Appl. Poly. Sci. 48 (1993) 199-203.