Recent Progresses in Preparation and Characterization of RO Membranes

Document Type : Review Paper


1 Industrial Membrane Research Laboratory, Department of Chemical and Biological Engineering, University of Ottawa, On. K1N 6N5, Canada

2 Industrial Membrane Research Laboratory (IMRL), Chemical and Biological Engineering Department, University of Ottawa, On., K1N 6N5, Canada


Reverse osmosis (RO) is a water purifcation technology that uses a semipermeable membrane to remove ions, molecules, and larger particles for the production of drinking water. The frst RO membrane for seawater desalination, wastewater treatment and other applications were made of cellulose acetate. But, the polyamide thin-flm composite membrane that can tolerate wide pH ranges, higher temperatures, and harsh chemical environments is the most popular, currently. To further improve the membranes’ performances, the recent trend in polymer-based membrane research has been focused to investigate various types of nanocomposite membranes, in which nanosized fllers such as SMCNT, MWCNT, graphene, graphene oxide, silica, or zeolite are incorporated. However, there are many challenges to commercialize the application of these membranes. Nowadays, it is a norm to characterize membranes by the advanced characterization techniques such as Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscope (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy and others for studying the physical and chemical properties of membranes and to co-relate those properties to the performances of the membranes. In this work, different aspects of RO membranes and proposed characterization methods, as well as recent progresses have been reviewed, comprehensively.

Graphical Abstract

Recent Progresses in Preparation and Characterization of RO Membranes


• Recent progress in preparation of membranes from different materials is discussed.
• Different aspects of RO membranes and proposed characterization methods, as
well as recent progresses have been reviewed.
• Inorganic membranes have potential in future.


Main Subjects

[1] S.S. Shenvi, A, Isloor, A.F. Ismail, A review on RO membrane technology: Developments and challenges, Desalination 368 (2015) 10-26.
[2] I.G. Wenten, Khoiruddin, Reverse osmosis applications: Prospect and challenges, Desalination 391 (2016) 112-115.
[3] I.L. Alsvik, M.B. Hägg, Pressure retarded osmosis and forward osmosis membranes: Materials and Methods, Polymers 5 (2013) 303-327.
[4] D. Roy, M. Rahni, P. Pierre, V. Yargeau,  Forward osmosis for the concentration and reuse of process saline wastewater, Chem. Eng. J. 287 (2016) 277-284.
[5] M. Soltanieh, W. Gill, Review of reverse osmosis membranes and transport models, Chemical Engineering Communications 12(4-6) (1981) 279-363.
[6] A. Rodríguez-Calvo,, G.A. Silva-Castro , F. Osorio, J. González-López , C. Calvo C, Novel,  Membrane materials for reverse osmosis desalination, Hydrol. Current Res. 5 (2014) 167,  DOI:10.4172/2157-7587.1000167
[7] M. Voith, Membrane movers: water treatment businesses adapt their portfolios to meet new regulations and reduce costs, Chem. Eng. News 88 (2010) 22–23.
[8]     WACO, HUNDAI, June 26, 2016,
[9] O. Snanyal, I. Lee, Recent progress in the applications of layer-by-layer assembly to the preparation of nanostructured ion-rejecting water purification membranes, J Nanosci. Nanotechnol. 14(3) (2014) 2178-89.
[10] T. Ishigami, K. Amano, A. Fujii, Y. Ohmukai, E.  Kamio, T. Maruyama, H. Matsuyama, Fouling reduction of reverse osmosis membrane by surface modification via layer-by-layer assembly, Sep. Purif. Techno. 99 (2012) 1-7.
[11], April 2016.
[12] B-H. Jeong, E.M.V. Hoek, Y. Yan, A. Subramani,  X. Huang, G. Hurwitz, A.K. hosh, A. Jawor, Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes, J. Membr. Sci. 294 (2007) 1–7.
[13] T. Sunohara, T. Masuda, Cellulose triacetate as a high-performance membrane, ContribNephrol, Basel Karger 173 (2011) 156-63.
[14] S. Delagah, Cellulose Acetate Bulletin R&D Bulletin completed on February 10, 2015, (final, PDF, 215KB).
[15] A. P. Duarte, M. T. Cidade, J. C. Bordado, Cellulose acetate reverse osmosis membranes: optimization of the composition, J. Appl. Polym. Sci. 100 (2006) 4052–4058.
[16] J. Silva, A.S. Abreu, M. Oliveira, A. V. Machado, Development of cellulose acetate membranes containing  nanoparticles for water applications, Materials (2015) Porto, 21-23 June.
[17] A. Bódalo, J.L. Gómez, E. Gómez, G. León, M. Tejera, Ammonium removal from aqueous solutions by reverse osmosis using cellulose acetate membranes, Desalination 184(1) (2005) 149-155.
[18] C.S. Slater, J.M. Zielinski, R.G. Wendel, C.G. Uchrin, Modeling of small scale reverse osmosis systems, Desalination 52 (1985) 267–284.
[19] A. Mosry, S. Ebrahim, El-R. Kenawy, T.A. Fattah, S. Kandil, Grafted cellulose acetate reverse osmosis membrane using 2-acrylamido-2-methylpropanesulfonic acid for water desalination, Water Science and Technology: Water Supply, 16 (2)  (2016) ; DOI:10.2166/ws.2016.025.
[20] S.S. Ali, H. Abdallah, Development of PES/CA blend RO membrane for water desalination, Inter. Review Chem. Eng. 4 (2012) 316-323.
[21] D.H.N. Perera, S.K. Nataraj, N.M. Thomson, A. Sepe, S. Hüttner, U. Steiner, H. Qiblawey, E. Sivaniah, Room-temperature development of thin film composite reverse osmosis membranes from cellulose acetate with antibacterial properties, J. Membr. Sci.  453 (2014) 212–22.
[22] A.M. Hassanien , M.A. El-Hashash, M.A. Mekewi, D.B. Guirguis, A.M. Ramadan, Fabrication of polyvinyl alcohol/cellulose acetate (PVA/CA/PEG) antibacterial membrane for potential water purification application, Hydrol. Current Res.  4(1) (2013) 6 pages.
[23] J.E. Cadotte, Reverse osmosis membrane, U.S. Patent 4,039,440, 1977.
[24] J.E. Cadotte, Interfacially synthesized reverse osmosis membrane, U.S. Patent 4,277,344, 1981.
[25] J.E. Cadotte, R. King, R. Majerle, R. Petersen, Interfacial synthesis in the preparation of reverse osmosis membranes, J. Macromolecular Sci. Chem. A 15 (1981) 727.
[26] C. Chu, edited by Ravindra Pogaku, Awang Bono, C. Chu (2013). Developments in Sustainable Chemical and Bioprocess Technology (Aufl. 2013 ed.). Boston, MA: Springer US. p. 112.ISBN 9781461462088.
[27] A.M.A. El-Aassar, Polyamide thin film composite membranes using interfacial polymerization: Synthesis, characterization and reverse osmosis performance for water desalination, Australian Journal of Basic and Applied Sciences, 6(6) (2012) 382-391.
[28] B. Khorshidi, T. Thundat, B.A. Fleck, M. Sadrzadeh,  A novel approach toward fabrication of high performance thin film composite polyamide membranes,  Scientific Reports 6, Article number: 22069 (2016)  DOI:10.1038/srep22069.
[29] R. N. Joshi, K. Singh, A. Bhattacharya, Approaches to prepare TFC polyamide membranes by coating diamine during, and/or post formation of asymmetric membranes and their performances, Braz. J. Chem. Eng. 28(3) (2011) 457-465.
[30] B.J.A. Tarboush, D. Rana, T. Matsuura, H.A. Arafat, R.M. Narbaitz, Preparation of thin-film-composite polyamide membranes for desalination using novel hydrophilic surface modifying macromolecules,  J. Membr. Sci. 325(1) (2008) 166-175.
[31] T.Y. Cath, M. Elimelech, J. R. McCutcheon, R.L. McGinnis, A. Achilli, D. Anastasio, A. R. Brady, A.E. Childress, I.V. Farr, N.T. Hancock, J. Lampi, L.D. Nghiem, M. Xie, N.Y. Yip, Standard methodology for evaluating membrane performance in osmotically driven membrane processes, Desalination 312 (2013) 31-38.
[32] H. Dong, L. Zhao, L. Zhang, H. Chen, C. Gao, W.W. Ho. High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination, J. Membr. Sci. 476 (2015) 373–83.
[33] L. Zhao, W.W. Ho, Novel reverse osmosis membranes incorporated with a hydrophilic additive for seawater desalination J. Membr. Sci. 455 (2014) 44–54.
[34] S.Y. Kwak , S.H. Kim, S.S. Kim , Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane, Environ. Sci. Technol. 35(11) (2001) 2388-94.
[35] A. Peyki, A. Rahimpour,   M. Jahanshahi, Preparation and characterization of thin film composite reverse osmosis membranes incorporated with hydrophilic SiO2 nanoparticles, Desalination 368 (2015) 152–158.
[36] A.S. Al-Hobaib, K.M. AL-Sheetan, M.Rafi Shaik, N.M. Al-Andis, M. S. Al-Suhybani, Characterization and evaluation of reverse osmosis membranes modified with Ag2O nanoparticles to improve performance, Nanoscale Research Letters 10 (2015) 379.
[37] M. Ghanbari, D. Emadzadeh, W. J. Lau, T. Matsuura, A. F. Ismail, Synthesis and characterization of novel thin film nanocomposite reverse osmosis membranes with improved organic fouling properties for water desalination, RSC Adv. 5 (2015) 21268-21276.
[38] G.N.B. Baroña, J. Lim, M. Choi, B. Jung, Interfacial polymerization of polyamide-aluminosilicate SWNT nanocomposite membranes for reverse osmosis, Desalination 325 (2013) 138-147.
[39] S. Qui, L. Wu, L. Zhang, H. Chen. C. Gao, Preparation of reverse osmosis composite membrane with high flux by interfacial polymerization of MPD and TMC, Appl. Polym. Sci. 112(4) (2009) 2066-2072.
[40] S.G. Kim, J.H. Chun, B.H. Chun, S. H. Kim, Preparation, characterization and performance of poly(aylene ether sulfone)/modified silica nanocomposite reverse osmosis membrane for seawater desalination, Desalination 325 (2013) 76-83.
[41] R. Cruz-Silva, S. Inukai, Takumi Araki, A. Morelo s-Gomez, J. Ortiz-Medina, K. Takeuchi, T. Hayashi, A. Tanioka, S. Tejima, T. Noguchi, M. Terrones, M. Endo. High performance and chlorine resistant carbon nanotube/aromatic polyamide reverse osmosis nanocomposite membrane, MRS Advances, DOI: (About DOI), 8 pages. Published online: 05 April 2016.
[42] T.V.  Ratto, J.K. Holt, A.W. Szmodis, Membranes with embedded nanotubes for selective permeability. US Patent 7,993,524 (2009).  
[43] H. J. Kim, K. Choi, Y. Baek, D-G. Kim, J. Shim, J. Yoon, J-C. Lee, High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions, ACS Appl. Mater. Interfaces 6 (4) (2014) 2819–2829.
[44] L. Zhang, G-Z. Shi, S. Qiu, L.H. Cheng, H.L Chen, Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes, Desalination and Water Treatment 34(1-3) (2011) 19-24.
[45] S. Inukai, R. Cruz-Silva, J. Ortiz-Medina, A. Morelos-Gomez, K. Takeuchi, T. Hayashi, A. Tanioka, T. Araki, S. Tejima, T. Noguchi, M. Terrones, M. Endo, High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite, Scientific Reports, 5, 2015, Article number: 13562, DOI: 10.1038/srep13562.
[46] T. Araki, R. Cruz-Silva, S. Tejima, K. Takeuchi, T. Hayashi, S.I nukai, T. Noguchi, A. Tanioka, T. Kawaguchi, M. Terrones, M. Endo, Molecular dynamics study of carbon nanotubes/polyamide reverse osmosis membranes: Polymerization, structure, and hydration,   ACS Appl. Mater Interfaces 7(44) (2015)  24566-24575.
[47] H.M. Hegab, L. Zou, Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification, J. Membr. Sci. 484 (2015) 95-106.
[48] H.J. Kim, MY. Lim, K.H. Jung, D-G. Kim, J-C. Lee, High-performance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides, J. Mater. Chem.  A 3 (2015) 6798–6809.
[49] K. Sunada, Y. Kikuchi, K. Hashimoto, A. Fujishima, Bactericidal and detoxification effects of TiO2 thin film photocatalysts, Environ. Sci. Technol. 32 (1998) 726-728.
[50] S.S. Madaeni, N. Ghaemi, Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation, J. Membr. Sci., 303(1-2) (2007) 221-223.
[51] H.D. Raval, P.S. Rana, S. Maiti, A novel high-flux, thin-film composite reverse osmosis membrane modified by chitosan for advanced water treatment, ASC Adv. 5 (2015) 6687-6694.
[52] H.D. Raval, S. Maiti,  Ultra-low energy reverse osmosis with thermal energy recovery from photovoltaic panel cooling and TFC RO membrane modification, Desalination and Water Treatment 57(10) (2016) 4303-4312.
[53] C.Y. Tang, Y. Zhao, R. Wang, C. Hélix-Nielsen , A.G. Fane, Desalination by biomimetic aquaporin membranes: Review of status and prospects, Desalination 308 (2013) 34–40.
[54] M. Kumar, M. Grzelakowski, J. Zilles, M. Clark, W. Meier, Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 20719–20724.
[55] C.Y. Tang, Y.-N. Kwon, J.O. Leckie, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes II. Membrane physiochemical properties and their dependence on polyamide and coating layers, Desalination 242 (2009) 168–182.
[56] Y. Zhao, C. Qiu, X. Li, A. Vararattanavech, W. Shen , J. Torres , C. Hélix-Nielsen,  X. Hu , A.G.  Fane, Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization, J. Membr. Sci. 423–424 (2012) 422–428.
[57] D.R. Schilling, Water desalination using 99% less energy with efrorene,, March 18th, 2013.
[58] K. Sint, B. Wang, P. Kral, Selective ion passage through functionalized graphene nanopores, J. Am. Chem. Soc. 130 (2008) 16448-16449.
[59] M.E. Suk, N.R. Aluru, Water transport through ultrathin grapheme. The Journal of Physical Chemistry Letters 1 (2010) 1590-1594.
[60] Casey (Oak Ridge Natioal Laboratory), Methane to the rescue! New energy efficient graphene desalination membrane for the 99%, Clean Technica, April 3rd, 2015.
[61] University of Manchester. Graphene's love affair with water: Water filters allow precise and fast sieving of salts and organic molecules, Science Daily.  13 February 2014 (
[62] J. Dorrier, Can graphene oxide filters unlock our most abundant water source?  May 11, 2014,
[63] K. C. Khulbe, T. Matsuura, C. Y. Feng, A. F. Ismail, Recent development on the effect of water/ moisture on the performance of zeolite membrane and MMMs containing zeolite for gas separation; review, RSC Adv. 6 (2016) 42943-42961.
[64] R. Barrer, S. D. James, Electrochemistry of crystal-polymer membranes. Part I. Resistance measurements, J. .Phys. Chem. 64 (1960) 417–427.
[65] W. Xu, J. Dong, J. Li, J. Li and F. Wu, A novel method for the preparation of zeolite ZSM-5, J. Chem. Soc. Chem. Commune. 10 (1990) 755–756.
[66] M.C. Duke, J. O’Brien-Abraham, N. Milne, B. Zhua, J.Y.S. Lin, J.C. Diniz da Costa, Seawater desalination performance of MFI type membranes made by secondary growth, Sep. Purif. Technol. 68 (2009) 343–350.
[67] Lin J, Murad S, A computer simulation study of the separation of aqueous solutions using thin zeolite membranes, Molecular Physics: An International Journal at the Interface between, Chemistry and Physics 99 (2001) 1175-1181.
[68] Y. Liu.  X. Chen, High permeability and salt rejection reverse osmosis by a zeolite nano-membrane, Phys. Chem. Chem. Phys.  15 (2013) 6817-6824.
[69] M. Heiranian, A.B. Farimani,  N.R. Aluru, Water desalination with a single-layer MoS2 nanopore,    Nature Communications 6, Article number: 8616, (2015) 6 pages..
[70] K.P. Lee, T.C.  Arnot, D. Mattia,  A review of reverse osmosis A review of reverse osmosis membrane materials for desalination-development to date and future potential, Science 370 (1-2) (2011) 1-22.
[71] L. Li , J. Dong , T. M. Nenoff, R. Lee ,  Reverse osmosis of ionic aqueous solutions on a MFI zeolite membrane, Desalination 170 (2004) 309-316.
[72] L. Li, J.  Dong , T.M. Nenoff, R. Lee, Desalination by reverse osmosis using MFI zeolite membranes, J. Membr. Sci. 243 (2004) 401-404.
[73] R. Xu, J. Wang, M. Kanezashi, T. Yoshioka, T. Tsuru, Development of robust organosilica membranes for reverse osmosis, Langmuir 27 (23) (2011) 13996–13999.
[74] L.  Li, N. Liu, B. McPherson, R. Lee, Enhanced water permeation of reverse osmosis through MFI-type zeolite membranes with high aluminum contents, Ind. Eng. Chem. Res. 46 (5) (2007) 1584-1589.
[75] A.F. Ismail, K.C. Khulbe, T. Matsuura, Gas separation membranes: Polymeric and inorganic, Springer, Switzerland, 2015.
[76] A. R. Behzad, K. Hooghan, C. Aubry, M.T. Khan,  J. P. Croue, SEM-FIB characterization of reverse osmosis membrane fouling,  Microsc. Microanal. 17 (2)   (2011) 1768-1769.
[77] F. Perreault, M.E. Tousley, M. Elimelech, Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets, Environ. Sci. Technol. Lett. 1 (2014) 71-76.
[78] Y. Fang S. J. Duranceau, Study of the effect of nanoparticles and surface morphology on reverse osmosis and nanofiltration membrane productivity, Membranes 3 (2013) 196-225.
[79] S.H. Kim, S.Y. Kwak, T. Suzuki, Positron annihilation spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology-controlled thin-film-composite (TFC) membrane, Environ Sci. Technol. 39(6) 2005, 1764-1770.
[80] P. S. Singh, V.K. Aswal, SANS study on nanostructure of thin-film-composite membrane for desalination and water purification, Neutron Scattering Society of India 1 (2013) 24-28.
[81] Y. N. Dahdal, V. Pipich, H. Rapaport, Y. Oren, R. Kasher, D. Schwahn, Small-angle neutron scattering studies of mineralization on BSA coated citrate capped gold nanoparticles used as a model surface for membrane scaling in RO wastewater desalination, Langmuir 30 (50) (2014) 15072–15082.
[82] K.C. Khulbe, T. Matsuura, G. Lamarch, A.-M. Lamarch, C. Choi, S.H. Noh, Study of the structure of asymmetric cellulose acetate membranes for reverse osmosis using electron spin resonance (ESR) method, Polymer 42 (2001) 6479-6484.
[83] K.C. Khulbe, C. Feng, T. Matsuura, G. Lamarche, A.-M. Lamarche, Study of the structure of asymmetric polyamide membranes for reverse osmosis using the electron spins resonance (ESR) method, Desalination 154 (2003) 1-8.
[84] M. Tamlin, Growth dynamics, charge density, and structure of polyamide thin-film composite membranes. Ph.D. Thesis, University of Illinois at Urbana-Champaign, 2014.
[85] C. Bartels, A surface science investigation of composite membranes, J. Membr. Sci. 45 (1989) 225-245.
[86] C.Y. Tang, Y.N. Kwon, J. O. Leckie, Probing the nano- and micro-scales of reverse osmosis membranes—A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements, J. Membr. Sci.  287(1) 2007 146–156.
[87] T. Nguyen, F.A. Roddick, L. Fan, Biofouling of water treatment membranes: A review of the underlying causes, monitoring techniques and control measures, Membranes 2(4) (2012) 804-840.
[88] A. Sharif, Material development and characterization for high salinity water after desalination   by membrane distillation at high temperature and pressure, M.Sc. Thesis, University of Illinois at Urbana-Champaign, 2011.
[89] G.R. Guillen, Y.  Pan, M. Li, E. M. V. Hoek, preparation and characterization of membranes formed by nonsolvent induced phase separation: A review, Ind. Eng. Chem. Res., 50 (7) (2011) 3798–3817.
[90] E.M. Van Wagner, A.C. Sagle, M.M. Sharma, Y.H. La, B.D. Freeman, Surface modification of commercial polyamide desalination membranes using poly(ethylene glycol) diglycidyl ether to enhance membrane fouling resistance, J. Membr. Sci. 367 (2011) 273–287.
[91] S. Beverly, S. Seal, S. Hong, Identification of surface chemical functional groups correlated to failure of reverse osmosis polymeric membranes, J. Vac. Sci. Techno. A 18 (2000) 1107;
[92] L.  Cui, M. Yao, B. Ren, K.S.  Zhang, Sensitive and versatile detection of the fouling process and fouling propensity of proteins on polyvinylidene fluoride membranes via surface-enhanced Raman spectroscopy, Anal. Chem.  83 (2011) 1709–1716.
[93] J.R. Lawrence, D.W. Swerhome,  G.G. Leppard,  T. Araki,  X. Zhang,  M.M. West,  A.P. Hitchcock,  Scanning transmission X-ray, Laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms,  Appl. Environ. Microbiol.  69 (2003), 5543–5554.
[94] C.  Glaves, C., D. Smith. Membrane pore structure analysis via NMR spin-lattice relaxation experiments, J. Membr. Sci. 46 (1989) 167-184.
[95] T. Schmid, C. Helmbrecht, U.  Panne, C. Haisch, R. Neissner, Process analysis of biofilms by photoacoustic spectroscopy, Anal. Bioanal. Chem.  375 (2003) 1124–1129.
[96] D.A. Graft von der Schulenburg,   J.S. Vrouwenvelder, S.A.  Creber, M.C.M. van Loosdrecht, M.L. Johns, Nuclear magnetic resonance microscopy studies of membrane biofouling, J. Membr. Sci.  323 (2008) 37–44.
[97] E.O. Fridjonsson, S.J. Vogt, J.S. Vrouwenvelder, M.L. Johns, Early non-destructive biofouling detection in spiral wound RO membranes using a mobile earth׳s field NMR, J. Membr. Sci.  489 (2015) 227–236.
[98] D.W. Ball, Photoacoustic spectroscopy, Spectroscopy 21(9) (2006) 14-16.
[99] H.C. Flemming, Biofouling in water systems, cases, causes and countermeasures,  Applied Microbiology and Biotechnology 59(6) (2002) 629-40.
[100] D.J. Mohan, L. Kullová, A study on the relationship between preparation condition and properties/performance of polyamide TFC membrane by IR, DSC, TGA, and SEM techniques, Desalination and Water Treatment  55(1-3) (2013) 586-596.
[101] Y. Baek, J. Kang, P. Theato, J. Yoon, Measuring hydrophilicity of RO membranes by contact angles via sessile drop and captive bubble method: A comparative study, Desalination 303 (2012) 23–28.
[102] N.J. Ginga, S.K. Sitaram, New method to measure tensile strength of low modulus thin films. Int. J. Fract. 170 (2011) 199-206.
[103] M. Kazemimoghadam, Preparation of nanopore HS zeolite membranes for reverse osmosis processes, Desalination and Water Treatment 30(1) (2011) 51-57.