Polymeric Gas Separation Membranes: What Makes them Industrially more Attractive?

Document Type : Editorial Note


Department of Polymer Reaction Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, 14155/143, Tehran, Iran

Graphical Abstract

Polymeric Gas Separation Membranes: What Makes them Industrially more Attractive?


Main Subjects

[1] Y. Yampolskii, Polymeric gas separation membranes, Macromolecules 45 (2012) 3298–3311.
[2] B. Xue, L. Gao, H. Jiang, Z. Geng, S. Guan, Y. Wang, Z. Liu, L. Jiang, High flux CO
2 transporting nanochannel fabricated by the self-assembly of a linear-brush block copolymer, Mater. Chem. A. 1 (2013) 8097-8100.
[3] P. Bandyopadhyay, D. Bera, S. Ghosh, S. Banerjee, Di-tert butyl containing semifluorinated poly(etheramide)s: Synthesis, characterization and gas transport properties, J. Membr. Sci. 447 (2013) 41341–423.
[4] D. Bera, P. Bandyopadhyay, S. Ghosh, S. Banerjee, Gas transport properties of aromatic polyamides containing adamantyl moiety, J. Membr. Sci. 453 (2014) 175–191.
[5] D. Bera, P. Bandyopadhyay, S. Ghosh, S. Banerjee, V. Padmanabhan, Highly gas permeable aromatic polyamides containing adamantine substituted triphenylamine, J. Membr. Sci. 474 (2015) 20–31.
[6] D. Bera, V. Padmanabhan, S. Banerjee, Highly gas permeable polyamides based on substituted triphenylamine, Macromolecules 48 (2015) 4541–4554.
[7] S. Bisoi, A. Mandal, V. Padmanabhan, S. Banerjee, Aromatic polyamides containing trityl substituted triphenylamine: Gas transport properties and molecular dynamics simulations, J. Membr. Sci. 522 (2017) 7778–7790.
[8] P.M. Budd, Encyclopedia of membranes, E. Drioli, L. Giorno, (Eds.), SpringerVerlag Berlin Heidelberg, 2016, pp. 1606-1607.
[9] K. Halder, M.M. Khan, J. Grunauer, S. Shishatskiy, C. Abetz, V. Filiza, V. Abetz, Blend membranes of ionic liquid and polymers of intrinsic microporosity with improved gas separation characteristics, J. Membr. Sci. 539 (2017) 368–382.
[10] R. Swaidan, B. Ghanem, E. Litwiller, I. Pinnau, Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity, Macromolecules 48 (2015) 6553–6561.
[11] M. Lee, C. Bezzu, M. Carta, P. Bernardo, G. Clarizia, J.C. Jansen, .N.B. McKeown, Enhancing the gas permeability of Troger’s base derived polyimides of intrinsic microporosity, Macromolecules 49 (2016) 4147-4154.
[12] J. Ahn, W.-J. Chung, I. Pinnau, J. Song, N. Du, G.P. Robertson, M.D. Guiver, Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1), J. Membr. Sci. 346 (2010) 280-287.
[13] H.B. Park, C.H. Jung, Y.M. Lee, A.J. Hill, S.J. Pas, S.T. Mudie, E. Van Wagner, B.D. Freeman, D.J. Cookson, Polymers with cavities tuned for fast selective transport of small molecules and ions, Science 318 (2007) 254-258.
[14] H. B. Park , S. H. Han, C. H. Jung , Y. M. Lee , A. J. Hill, Thermally rearranged (TR) polymer membranes for CO2separation, J. Membr. Sci., 359 (2010) 11–24.
[15] L. M. Robeson, M. E. Dose, B. D. Freeman, D. R. Paul, Analysis of the transport properties of thermally rearranged (TR) polymers and polymers of intrinsic microporosity (PIM) relative to upper bound performance, J. Membr. Sci. 525 (2017) 18–24.
[16] M. Calle, Y.M. Lee, Thermally rearranged (TR) poly(ether-benzoxazole) membranes for gas separation, Macromolecules, 44 (2011) 1156–116.