Decolorization of Dyeing Effl uent by Novel Ultrafi ltration Ceramic Membrane from Low Cost Natural Material

Document Type : Research Paper


1 Chemical Department Faculty of Science of Sfax University Of Sfax - Tunisia

2 Laboratoire Sciences des Matériaux et Environnement, Université de Sfax, Faculté des sciences de Sfax, Rte. de Soukra Km 4, 3018 Sfax, Tunisia

3 Chemical department , faculty of science of sfax tunisia

4 Institut Europeen des Membranes, UMR 5635 (CNRS, ENSCM, UM ), Université de Monpellier, France

5 Institut Europeen des Membranes, UMR 5635 (CNRS, ENSCM, UM), Université de Monpellier, France

6 chemical department IPEIS Université de sfax, tunisia


This paper is devoted to the application of new low cost ceramic ultrafi ltration membranes material coming from the Tunisian ores (mud) which is usually considered as disastrous for the environment. A ceramic tubular support previously elaborated from mud was coated in the lumen side by slip casting method. After sintering at 650°C, the coated membrane shows homogeneous layer without cracks, with a pore diameter of 11 nm. The coating has the thickness of ~9 µm and water permeability of the prepared membrane is 90 L/ Then the prepared membrane has been applied for treating of dyeing wastewater under 5 bar pressure. The result was interesting with a permeate fl ux of 65 l/h.m2, pollutants retention rate of 90% for COD and almost a total retention of turbidity and color, respectively. The membrane can then be regenerated by using a chemical washing.

Graphical Abstract

Decolorization of Dyeing Effl uent by Novel Ultrafi ltration Ceramic Membrane from Low Cost Natural Material


Main Subjects

[1] M. Vedrenne, R. Vasquez-Medranoa, D. Prato-Garciaa, B.A. Frontana-Uribec, M. Hernandez-Esparza, J.M. Andrés, A ferrous oxalate mediated photo-Fenton system: Toward an increased biodegradability of indigo dyed wastewaters, J. Hazard. Mater. 243 (2012) 292–301.
[2] J. Lin, W. Ye, H. Zeng, H. Yang, J. Shen, S. Darvishmanesh, P. Luis, A. Sotto, B. Van der Bruggen, Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes, J. Membr. Sci. 477 (2015) 183-193.
[3] J. Lin, W. Ye, J. Huang, B. Ricard, M. Baltaru, B. Greydanus, S. Balta, J. Shen, M. Vlad, A. Sotto, P. Luis, B. Van der Bruggen, Toward resource recovery from textile wastewater: dye extraction, water and base/acid regeneration using a hybrid NFBMED process, Sustain. Chem. Eng. 3-9 (2015) 1993-2001.
[4] J. Lin, C.Y. Tang, W. Ye, S.P. Sun, S.H. Hamdan, A. Volodin, C.V. Haesendonck, A. Sotto, P. Luis, B. Van der Bruggen, Unraveling flux behavior of superhydrophilic loose nanofiltration membranes during textile wastewater treatment, J. Membr. Sci. 493 (2015) 690-702.
[5] J. Lin, W. Ye, M.-C. Baltaru, Y.P. Tang, N.J. Bernstein, P. Gao, S. Balta, M. Vlad, A. Volodin, A. Sotto, P. Luis, A.L. Zydney, B. Van der Bruggen, Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment, J. Membr. Sci. 514 (2016) 217-228.
[6] L. Xujie, L. Lin, B. Yang, C. Jihua, Reuse of printing and dyeing wastewater in processes assessed by pilot-scale test using combined biological process and subfilter technology, J. Clean. Prod. 17 (2009) 111–114.
[7] K. Tak-Hyun, P. Chulhwan, K. Sangyong, Water recycling from desalination and purification process of reactive dye manufacturing industry by combined membrane filtration, J. Clean. Prod. 13 (2005) 779–786.
[8] V. Chen, Y. Yanga, M. Zhoua, M. Liua, S. Yua, G. Gaol, Comparative study on the treatment of raw and biological treated textile effluents through submerged nanofiltration, J. Environ. Manag. 284 (2015) 121-129.
[9] A. Hammami, C. Charcosset, R.B. Amar, Performances of continuous adsorptionultrafiltration hybrid process for AO7 dye removal from aqueous solution and real textile wastewater treatment, J. Membr. Sci. Technol. 7 (2017) 171. DOI: 10.4172/2155-9589.1000171.
[10] G. Masmoudi, R. Trabelsi, E. Ellouze, R.B. Amar, New treatment at source approach using combination of microfiltration and nanofiltration for dyeing effluents reuse, Int. J. Environ. Sci. Technol. 11 (2013) 1007-1016.
[11] E. Ellouze, N. Tahri, R.B. Amar, Enhancement of textile wastewater treatment process using nanofiltration, Desalination 286 (2012) 16-23.
[12] A.Y. Zahrim, C. Tizaoui, N. Hilal, Coagulation with polymers for nanofiltration pretreatment of highly concentrated dyes: a review, Desalination 266 (2011) 1–16.
[13] M. Unlu, H. Yukseler, U. Yetis, Indigo dyeing wastewater reclamation by membrane-based filtration and coagulation processes, Desalination 240 (2009) 178–185.
[14 ] E. Ellouze, D. Ellouze, A. Jrad, R.B. Amar, Treatment of synthetic textile wastewater by combined chemical coagulation/membrane processes, Desalin. Water Treat. 33 (2011) 118–124.
[15] S. Chemlal, M. Sghyar, M. Rafiq, A. Larbot, L. Cot, Elaboration de membranes de spinelles de cobalt CoAl2O4 et de spinelle de manganèse MnAl2O4 pour l’ultrafiltration, Ann. Chim. Sci. Mat. 25 (2000) 577-582.
[16] N. Saffaj, M. Persin, S.A. Younssi, A. Albizane, M. Bouhria, H. Loukili, H. Dach, A. Larbot, Removal of salts and dyes by low ZnAl2O4–TiO2 ultrafiltration membrane deposited on support made from raw clay, Sep. Purif. Technol. 47 (2005) 36-42.
[17] W.J. Koros, R. Mahajan, Pushing the limits on possibilities for large scale gas separation: which strategies, J. Membr. Sci. 175 (2000) 181–191.
[18] J. Bentama, K. Ouazzania, P. Schmitz, Mineral membranes made of sintered clay: application to crossflow microfiltration, Desalination 146 (2002) 57–61.
[19] S. Khemakhem, A. Larbot, R.B. Amar, New ceramic microfiltration membranes from Tunisian natural materials: application for the cuttlefish effluents treatment, Ceram. Int. 35 (2009) 55–61.
[20] M.R. Weir, E. Rutinduka, C. Detellier, C.Y. Feng, Q. Wang, T. Matsuura, R. Le VanMao, Fabrication, characterization and preliminary testing of all-inorganic ultrafiltration membranes composed entirely of a naturally occurring sepiolite clay mineral, J. Membr. Sci. 182 (2001) 41–50.
[21] S. Rakib, M. Sghyar, M. Rafiq, A. Larbot, L. Cot, New porous ceramics for tangential filtration, Sep. Purif. Technol. 25 (2001) 385-390.
[22] S. Masmoudi, R.B. Amar, A. Larbot, H. El Feki, A.B. Salah, L. Cot, Elaboration of inorganic microfiltration membranes with hydroxyapatite applied to the treatment of wastewater from sea product industry, J. Membr. Sci. 247 (2005) 1–9.
[23] S. Masmoudi, A. Larbot, H. El Feki, R.B. Amar, Elaboration and characterization of apatite based mineral supports for microfiltration and ultrafiltration membranes, Ceram. Int. 33 (2007) 337–344.
[24] S. Ayadi, I. Jedidi, M. Rivallin, F. Gillot, S. Lacour, S. Cerneaux, M. Cretin, R.B. Amar, Elaboration and characterization of new conductive porous graphite membranes for electrochemical advanced oxidation processes, J. Membr. Sci. 446 (2013) 42-49.
[25] A.S. Mukasyan, C. Costello, K.P. Sherlock, D. Lafarga, A.Varma, Perovskite membranes by aqueous combustion synthesis: synthesis and properties, Sep. Purif. Technol. 25 (2001) 117-126.
[26] S. Sarkar., S. Bandyopadhyay, A. Larbot, S. Cerneaux, New clay–alumina porous capillary supports for filtration application, J. Membr. Sci. 392-393 (2012) 130-136.
[27] Y. Li, X. Zhang, J. Wang, Preparation for ZSM-5 membranes by a two-stage varying-temperature synthesis, Sep. Purif. Technol. 25 (2001) 459-466.
[28] I. Jedidi, S. Khemakhem, A. Larbot, R.B. Amar, Elaboration and characterization of fly ash based mineral supports for microfiltration and ultrafiltration membranes, Ceram. Int. 35 (2009) 2747–2753.
[29] I. Jedidi, S. Saïdi, S. Khemakhem, A. Larbot, N. Elloumi-Ammar, A. Fourati, A. Charfi, A.B. Salah, R.B. Amar, Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment, J. Hazard. Mater. 172 (2009) 152–158.
[30] M. Khemakhem, S. Khemakhem, S. Ayedi, R.B. Amar, Study of ceramic ultrafiltration membrane support based on phosphate industry subproduct: application for the cuttlefish conditioning effluents treatment, Ceram. Int. 37 (2011) 3617-3625.
[31] I. Khiari, I. Chaari, E. Fakhfakh, M. Medhioub, F. Jamoussi, Les Premières Journées Tunisiennes sur la Valorisation des Argiles, Borj Cédria, 2010.
[32] I. Khouni, B. Marrot, R.B. Amar, Decolourization of the reconstituted dye bath effluent by commercial laccase treatment: optimization through response surface methodology, Chem. Eng. J. 15 (2010) 121–133.
[33] J. Weili, Y. Zengwei, B. Jun, S. Li, Conserving water by optimizing production schedules in the dyeing industry, J. Clean. Prod. 18 (2010) 1696–1702.
[34] S. Khemakhem, R. Ben Amar, A. Larbot, Synthesis and characterization of a new inorganic ultrafiltration membrane composed entirely of Tunisian natural illite clay, Desalination 206 (2007) 210–214.
[35] S. Masmoudi, A. Larbot, H. El Feki, R.B. Amar, Use of ultrafiltration membranes with apatite for the treatment of cuttlefish effluent, Desalination 200 (2006) 335–336.
[36] G. Masmoudi, Traitement à la source et valorisation des effluents textiles par intégration des procédés membranaires, PhD Thesis, Université de Sfax, Tunisia, 2014.
[37] V. Chen, A.G. Fane, S. Maedani, I.G. Wenton, Particle deposition during membrane filtration of colloids: transition between concentration polarization and cake formation, J. Membr. Sci. 125 (1997) 109–122.
[38] B. Tansel, W.Y. Bao, I.N. Tansel, Characterization of fouling kinetics in ultrafiltration systems by resistances in series model, Desalination 129 (2000) 7–14.
[39] B. Van der Bruggen, G. Cornelis, C. Vandecasteele, I. Devreese, Fouling of nanofiltration and ultrafiltration membranes applied for wastewater regeneration in the textile industry, Desalination 175 (2005) 111–119.