Nanoparticles Retention Potential of Multichannel Hollow Fiber Drinking Water Production Membrane

Document Type : Research Paper


1 LM2P2, Aix Marseille UNiversity

2 Aix Marseille Université, CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europôle de l’Arbois, BP80, Pavillon Laennec, Hall C, 13545 Aix en Provence Cedex, France

3 Aix Marseille Université, CNRS, Centrale Marseille, Institut FRESNEL, UMR 7249, 13013, Marseille, France

4 Europole de l'Arbois, bat. Laennec, Hall C BP 80, 13545


This study aims to investigate the potential of nanoparticle retention of ultrafi ltration (UF) multichannel hollow fiber membrane. Filtration experiments of fl uorescent silica nanoparticles (NPs) (10 and 100 nm) and CdTe quantum dots (1.5 nm) suspensions were carried out under diff erent operating conditions to analyze the retention rate (RT), the fouling zone and the membrane productivity. Fouling mechanism occurring during the experiment has been correlated with the distribution profi les of NPs obtained during the membrane autopsy after fi ltration by Confocal Laser Scanning Microscopy (CLSM). Results show that large NPs are totally retained on the membrane surface. Medium NPs pass through the membrane at the beginning of the fi ltration and are gradually stopped in the membrane skin before forming a deposit on the membrane surface. The retention rate of small NPs also increases over time and an in-depth fouling of the membrane (skin + support) has been identifi ed. Mass balance and determination of NPs surface deposit thickness, in the case of a filtration cake, determined by CLSM and scanning electron microscopy (SEM) allowed the estimation of NPs amount trapped in the membrane structure (skin or support) and have been compared to the fouling resistance observed during the filtration run. The CLSM analysis of the membrane on its section presents, in that study, a signifi cant interest because of the high accuracy of the measures: 538.16 nm compared to the 5000 nm reported in a previous study.

Graphical Abstract

Nanoparticles Retention Potential of Multichannel Hollow Fiber Drinking Water Production Membrane


Main Subjects

[1] F. Gottschalk, B. Nowack, The release of engineered nanomaterials to the environment, J. Environ. Monit., 13 (2011) 1145-1155.
[2] P. Andujar, S. Lanone, P. Brochard, J. Boczkowski, Effets respiratoires des nanoparticules manufacturées, Rev. Mal. Respir., 26 (2009) 625–637.
[3] D. Palomino, Nanoparticules: Risques pour l’homme et l’environnement, GWA, 89 (2009) 979–990.
[4] C. Santaella, M. Auffan, A. Thiery, J.-Y. Bottero, Reproduire un écosystème pour évaluer l’impact des nanoparticules, Biofutur, 347 (2013) 46–49.
[5] A. Simon-Deckers, Effets biologiques de nanoparticules manufacturées: influence de leurs caractéristiques, AgroParisTech, 2008.
[6] R. Hischier, T. Walser, Life cycle assessment of engineered nanomaterials: State of the art and strategies to overcome existing gaps, Sci. Total Environ., 425 (2012) 271–282.
[7] M. Troester, H.-J. Brauch, T. Hofmann, Vulnerability of drinking water supplies to engineered nanoparticles, Water Res., 96 (2016) 255–279.
[8] N. Wu, Y. Wyart, J. Rose, B. Angeletti, P. Moulin, Application of membrane processes in fractionation of elements in river water, Water Sci. Technol., 72 (2015) 2278-2291.
[9] D. A. Ladner, M. Steele, A. Weir, K. Hristovski, P. Westerhoff, Functionalized nanoparticle interactions with polymeric membranes, J. Hazard. Mater., 211 (2012) 288–295.
[10] F. Springer, S. Laborie, C. Guigui, Removal of SiO2 nanoparticles from industry wastewaters and subsurface waters by ultrafiltration: Investigation of process efficiency, deposit properties and fouling mechanism, Sep. Purif. Technol., 108 (2013) 6–14.
[11] T.E. Abbott Chalew, G.S. Ajmani, H. Huang, K.J. Schwab, Evaluating Nanoparticle Breakthrough during Drinking Water Treatment, Environ. Health Perspect., Aug. 2013.
[12] J. Decarolis, S. Hong, J. Taylor, Fouling behavior of a pilot scale inside-out hollow fiber UF membrane during dead-end filtration of tertiary wastewater, J. Membr. Sci., 191 (2001) 165–178.
[13] E. Barbot, P. Dussouillez, J.Y. Bottero, P. Moulin, Coagulation of bentonite suspension by polyelectrolytes or ferric chloride: Floc breakage and reformation, Chem. Eng. J., 156 (2010) 83–91.
[14] C. Henry, J.A. Brant, Mechanistic analysis of microfiltration membrane fouling by buckminsterfullerene (C60) nanoparticles, J. Membr. Sci., 415 (2012) 546–557.
[15] K.W. Trzaskus, W.M. de Vos, A. Kemperman, K. Nijmeijer, Towards controlled fouling and rejection in dead-end microfiltration of nanoparticles – Role of electrostatic interactions, J. Membr. Sci., 496 (2015) 174–184.
[16] K. Trzaskus, M. Elshof, A. Kemperman, K. Nijmeijer, Understanding the role of nanoparticle size and polydispersity in fouling development during dead-end microfiltration, J. Membr. Sci., 516 (2016) 152–161.
[17] K. W. Trzaskus, A. Zdeb, W. M. de Vos, A. Kemperman, K. Nijmeijer, Fouling behavior during microfiltration of silica nanoparticles and polymeric stabilizers, J. Membr. Sci., 505 (2016) 205–215.
[18] D. Jassby, S.-R. Chae, Z. Hendren, M. Wiesner, Membrane filtration of fullerene nanoparticle suspensions: Effects of derivatization, pressure, electrolyte species and concentration, J. Colloid Interface Sci., 346 (201) 296–302.
[19] N. Wu, Y. Wyart, L. Siozade, G. Georges, P. Moulin, Characterization of ultrafiltration membranes fouled by quantum dots by confocal laser scanning microscopy, J. Membr. Sci., 470 (2014) 40–51.
[20] J. Hermia, Constant pressure blocking filtration laws - Application to power-law non-newtonian fluids, Trans IChemE, 60 (1982) 111–120.
[21] A. Charfi, Etude d’un procédé membranaire de traitement des eaux usées: effet des paramètres biotiques et abiotiques sur le colmatage de la membrane, Université de Carthage, 2014.
[22] V.V. Tarabara, I. Koyuncu, M.R. Wiesner, Effect of hydrodynamics and solution ionic strength on permeate flux in cross-flow filtration: direct experimental observation of filter cake cross-sections, J. Membr. Sci., 241 (2004) 65–78.