Membrane Processing of Grape Must for Control of the Alcohol Content in Fermented Beverages

Document Type : Research Paper


1 Departamento de Tecnologia alimentar, biotecnologia e nutrição. Escola Superior Agraria de Santarem; Instituto Politecnico de Santarem. Santarem. Portugal.

2 Departamento de Engenharia Química. Instituto Superior Técnico. Universidade de Lisboa. 1049-001 Lisboa. Portugal

3 Departamento de Tecnologia Alimentar, Biotecnologia e Nutrição, Instituto Politecnico de Santarem, Escola Superior Agraria, 2001-904 Santarem, Portugal.

4 Departamento de Engenharia Química. Instituto Superior Técnico. Universidade de Lisboa. 1049-001 Lisboa. Portugal.


The great demand of beverages, both alcohol-free and with low alcohol content, is a great challenge for the production of beverages with controlled alcohol content through the use of sustainable enological practices. The present work addresses this challenge with the processing of grape must by reverse osmosis (RO) for must reconstitution with different sugar contents prior to the alcoholic fermentation. The original must came from grapes grown in Quinta do Quinto, in Santarém, collected after destemming and mechanic crushing, and preserved in a refrigerated chamber at -1.6 °C until processing by RO. The RO processing was carried out in Escola Superior Agrária de Santarém, with a pilot plant equipped with RO spiral wound modules, M38RO, from Alfa Laval, Denmark. The total membrane permeation area is 15 m2. The work pressure was 55 bar. The original must had 23.7 oBrix, a density of 1108 g.L-1, 15.2% (v/v) of probable alcohol, and a conductivity of 2.01 The must reconstitution was carried out, by mixing the concentrated grape must with the vegetal water produced by RO (permeate) to obtain beverages with a nominal alcohol content of 5%, 7%, 10% and 13% (v/v). The fermentation average temperature was between 18.2 and 19.7 °C, and the fnal density rounded about 993 The beverages were analysed by different parameters, including total polyphenols, total anthocyanins, colour intensity and hue, the coordinates CIELab, alcohol content, total acidity, volatile acidity, pH, free SO2 and total SO2. The attributes of the beverage, corresponding to the visual appearance, aroma and taste senses, as well as the overall judgment were evaluated by the tasters. The proposed method can produce beverages with controlled low alcohol content. The decrease of the alcohol content led to lower content of polyphenols compounds which influenced the sensory evaluatio.

Graphical Abstract

Membrane Processing of Grape Must for Control of the Alcohol Content in Fermented Beverages


• Grape must was concentrated by RO, during 55 minutes, from 23.7 ºBx to 28.5 ºBx.
• The average permeate flux was 2.12 L.m
• The must reconstitution was carried out to obtain fermented beverages with an
alcohol volume content of 5%, 7%, 10% and 13% (v/v).
• Beverages with low alcohol content had a lower content of polyphenols compounds
which influenced the sensory evaluatio.


Main Subjects

[1] J.M. Alston, K.B. Fuller, J.T. Lapsley, G. Soleas, Too much of a good thing? Causes and consequences of increases in sugar content of California wine grapes, J. Wine Econ. 6 (2011) 135–159.
[2] R. Longo, J.W. Blackman, P.J. Torley, S.Y., Rogiers, L.M. Schmidtke, Changes in volatile composition and sensory attributes of wines during alcohol content reduction, J. Sci. Food Agric. 97 (2017) 8-16.
[3] C. Varela, P.R. Dry, D.R. Kutyna, I.L. Francis, P.A. Henschke, C.D. Curtini, P.J. Chambers, Strategies for reducing alcohol concentration in wine, Aust. J. Grape Wine Res. 21 (2015) 670–679.
[4] U. Schobinger, R. Waldvogel, P. Dürr, Method for the preparation of wine or fruit wine without alcohol, International Publication Number WO 82/02723 (1982).
[5] E. Gómez-Plaza, J.M. López-Nicolás, J.M. López-Roca, A. Martı́nez-Cutillas, Dealcoholization of Wine. Behaviour of the Aroma Components during the Process, LWT - Food Sci. Technol. 32 (1999) 384–386.
[6] M. Catarino, A. Mendes, Dealcoholizing wine by membrane separation processes, Innov. Food Sci. Emerg. Technol. 12 (2011) 330–337.
[7] Y.Y. Belisario-Sánchez, A. Taboada-Rodríguez, F. Marín-Iniesta, A. López-Góméz, Dealcoholised wines by spinning cone column distillation: phenolic compounds and antioxidant activity measured by the 1.1-diphenyl-2-picrylhydrazyl method, J. Agric. Food Chem. 57 (2009) 6770–6778.
[8] B. Fedrizzi, E. Nicolis, F. Camin, E. Bocca, C. Carbognin, M. Scholz, P. Barbieri, F. Finato, R. Ferrarini, Stable isotope ratios and aroma profile changes induced due to innovative wine dealcoholisation approaches, Food Bioprocess Technol. 7 (2014) 62–70.
[9] G.D. Francesco, G. Freeman, E. Lee, O. Marconi, G. Perretti, Effects of operating conditions during low-alcohol beer production by osmotic distillation, J. Agric. Food Chem. 62 (2014) 3279–3286.
[10] L. Liguori, P. Russo, D. Albanese, M.D. Matteo, Evolution of quality parameters during red wine dealcoholization by osmotic distillation, Food Chem. 140 (2013) 68–75.
[11] L. Liguori, P. Russo, D. Albanese, M.D. Matteo, Effect of process parameters on partial dealcoholization of wine by osmotic distillation, Food Bioprocess Technol. 6 (2012) 2514–2524.
[12] S. Varavuth, R. Jiraratananon, S. Atchariyawut, Experimental study on dealcoholization of wine by osmotic distillation process. Sep. Purif. Technol. 66 (2009) 313–321.
[13] N. Diban, V. Athes, M. Bes, I. Souchon, Ethanol and aroma compounds transfer study for partial dealcoholization of wine using membrane contactor, J. Membrane Sci. 311 (2008) 136–146.
[14] P.A. Hogan, R.P. Canning, P.A. Peterson, R.A. Johnson, A.S. Michaels, A new option: osmotic distillation, Chem. Eng. Prog. 94 (1998) 49–61.
[15] A. Olmo, C.A. Blanco, L. Palacio, P. Pradanos, A. Hernandez, Pervaporation methodology for improving alcohol-free beer quality through aroma recovery, J. Food Eng. 133 (2014) 1–8.
[16] L. Takács, G. Vatai, K. Korany, Production of alcohol free wine by pervaporation, J. Food Eng. 78 (2007) 118–125.
[17] M. Gil, S. Estévez, N. Kontoudakis, F. Fort, J.M. Canals, F. Zamora, Influence of partial dealcoholization by reverse osmosis on red wine composition and sensory characteristics, Eur. Food Res. Technol. 237 (2013) 481–488.
[18] M. Catarino, A. Mendes, Non-alcoholic beer: a new industrial process, Sep. Purif. Technol. 79 (2011) 342–351.
[19] M. Bogianchini, A.B. Cerezo, A. Gomis, F. Lopez, M.C. Garcia-Parrilla, Stability, antioxidant activity and phenolic composition of commercial and reverse osmosis obtained dealcoholised wines, LWT – Food Sci. Technol. 44 (2011)1369–1375.
[20] M. Mietton-Peuchot, New Applications for Membrane Technologies in Enology. In: Membranes for Food Applications - Vol. 3. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. 2010, pp. 119-127.
[21] J. Labanda, S.Vichi, J. Llorens, E. López-Tamames, Membrane separation technology for the reduction of alcoholic degree of a white model wine, LWT - Food Sci. Technol. 42 (2009) 1390–1395.
[22] A. Massot, M. Mietton-Peuchot, C. Peuchot, V. Milisic, Nanofiltration and reverse osmosis in winemaking, Desalination, 231 (2008) 283–289.
[23] M.V. Pilipovik, C. Riverol, Assessing dealcoholization systems based on reverse osmosis, J. Food Eng. 69 (2005) 437–441.
[24] A.Versari, R. Ferrarini, G.P. Parpinello, S. Galassi, Concentration of Grape Must by Nanofiltration Membranes, Food Bioprod. Process. 81 (2003) 275–278.
[25] M. Lopez, S. Alvarez, F.A. Riera, R. Alvarez, Production of low alcohol content apple cider by reverse osmosis, Ind. Eng. Chem. Res. 41 (2002) 6600–6606.
[26] R. Ferrarini, A. Versari, S. Galassi, A preliminary comparison between nanofiltration and reverse osmosis membranes for grape juice treatment, J. Food Eng. 50 (2001) 113–116.
[27] J.L. Escudier, Evaluation de quelques techniques adaptées a la d’esalcoolisation des vins. La Revue Française d’Oenologie, 57S (1990) 57–61.
[28] K. Bui, R. Dick, G. Moulin, P. Galzy, A reverse osmosis for the production of low ethanol content wine. Am J Enol Vitic. 37 (1986) 297–300.
[29] J. Bonnet, H. Vilmorin, Process for the controlled reduction of the sugar content of fruit juice and device for practicing this process, International Publication Number US 2004/0234658A1 (2004).
[30] E. Aguera, V. Athes-Dutour, M. Bes, S. Caille, P. Coterreau, J.L. Escudier, M. Mikolajczak, A. Roy, J.M. Sablayrolles, A. Samson, I. Souchon, J.P. Vidal, Réduction de la teneur en alcool des vins: Étude comparative de différentes technologies, Bulletin de l’OIV, 83 (2010) 31–42.
[31] P. Cottereau, D. Solanet, C. Riou, P. Noilet, Réduction de la teneur en sucre des moûts: simplification du process, Raisins et Vinifications, 5 (2011) 27–33.
[32] N. García-Martín, S. Perez-Magariño, M. Ortega-Heras, C. González-Huerta, M. Mihnea, M.L. González-Sanjosé, L. Palacio, P. Prádanos, A. Hernández, Sugar reduction in musts with nanofiltration membranes to obtain low alcohol-content wines, Sep. Purif. Technol. 76 (2010) 158–170.
[33] C.M. Salgado, F.J. Carmona, L. Palacio, P. Prádanosa, A. Hernández, Evaluation of Nanofiltration Membranes for Sugar Reduction in Red Grape Must, Procedia Eng. 44 (2012) 1716–1717.
[34] Method for Simultaneous Concentration and Rectification of Grape Must Using Nanofiltration and Electrodialysis”, PCT/PT2007/000045; US 2010/ 0092628; WO2008/051100; South Africa Nº: 2009/02802.
[35] C.R. Smith, Apparatus and method for removing compounds from a solution. International Publication Number US 5480665 (1996).
[36] C.M. Salgado, E. Fernández-Fernández, L. Palacio, A. Hernández, P. Prádanosa, Alcohol reduction in red and white wines by nanofiltration of musts before fermentation, Food Bioprod. Process 96 (2015) 285–295.
[37] A. Gambuti, A. Rinaldi, M.T. Lisanti, R. Pessina, L. Moio, Partial dealcoholisation of red wines by membrane contactor technique: influence on colour, phenolic compounds and saliva precipitation index, Eur Food Res Technol 233 (2011) 647–655.
[38] S. Meillon, C. Urbano, P. Schlich, Contribution of the temporal dominance of sensations (TDS) method to the sensory description of subtle differences in partially dealcoholized red wines, Food Qual. Prefer. 20 (2009) 490–499.
[39] OIV, Compendium of International Methods of Wine and Must Analysis I/II. p. Organisation Internationale de la Vigne et du Vin, Paris, France, 2016.
[40] P. Ribéreau-Gayon, Le dosage des composés phénoliques totaux dans les vins rouges, Chimie Analytique 52 (1970) 627-631.
[41] P. Ribéreau-Gayon, E. Stonestreet, Les dosages des anthocyanes dans le vin rouge. Bull. Société Chimie, 9, (1965), 2649-2652.
[42] E.S. King, H. Heymann, The effect of reduced alcohol on the sensory profiles and consumer preferences of white wine, J. Sens. Stud. 29 (2014) 33–42.
[43] M.T. Lisanti, A. Gambuti, A. Genovese, P. Piombino, L. Moio, Partial dealcoholization of red wines by membrane contactor technique: effect on sensory characteristics and volatile composition, Food Bioprocess Technol. 6 (2013) 2289–2305.
[44] S. Meillon, D. Viala, M. Medel, C. Urbano, G. Guillot, P. Schlich, Impact of partial alcohol reduction in Syrah wine on perceived complexity and temporality of sensations and link with preference, Food Qual. Pref. 21 (2010) 732–740.
[45] M.P. Saenz-Navajas, E. Campo, L. Cullere, P. Fernandez-Zurbano, D. Valentin, V. Ferreira Effects of the nonvolatile matrix on the aroma perception of wine, J. Agric. Food Chem. 58 (2010) 5574–5585.
[46] S. Meillon, C. Urbano, G. Guillot, P. Schlich, Acceptability of partially dealcoholized wines – Measuring the impact of sensory and information cues on overall liking in real-life settings, Food Qual. Pref. 21 (2010) 763-773.