Microencapsulation in Food Chemistry

Document Type: Review Paper

Authors

1 Centre Tecnològic de la Química de Catalunya, Carrer de Marcellí Domingo

2 1Centre Tecnològic de la Química de Catalunya, Carrer de Marcel•lí Domingo, 43007 Tarragona, Spain 2Universitat Rovira i Virgili, Departament d’Enginyeria Quimica, Av. Paisos Catalans, 26, 43007 Tarragona, Spain

3 Universitat Rovira i Virgili, Departament d’Enginyeria Quimica, Av. Paisos Catalans, 26, 43007 Tarragona, Spain

4 Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

5 Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614, Poznan, Poland

Abstract

Encapsulation, invented in 1953 by B.K. Green & L. Schleicher employed in the laboratories of the National Cash Register Company, Dayton, USA, is defned as a technology of packaging solids, liquids, or gaseous materials in miniature, sealed capsules that can release their contents at controlled rates under specifc conditions. Encapsulation involves the incorporation of food ingredients, enzymes, cells, or other materials in small capsules. Microcapsules offer food processors a means to protect sensitive food components, ensure against nutritional loss, utilize otherwise sensitive ingredients, incorporate unusual or time-release mechanisms into the formulation, mask or preserve flavors and aromas, and transform liquids into easily handled solid ingredients. Various techniques are employed to form microcapsules, including: spray drying, extrusion coating, fluidized-bed coating, coacervation, layer-by-layer, and interfacial polymerization method. Recent developments in each of these techniques are discussed in this review, comprehensively.

Graphical Abstract

Microencapsulation in Food Chemistry

Highlights

-Developments in microencapsulation technologies

-Microencapsulation in food chemistry

-Microencapsulation methods explanation

Keywords

Main Subjects


[1] K.G.H. Desai, H. Jin Park, Recent Developments in Microencapsulation of Food Ingredients, Drying Technology. 23 (2005) 1361-1394.

[2] F. Shahidi, X.Q. Han, Encapsulation of food ingredients, Crit Rev Food Sci Nutr. 33 (1993) 501-547.

[3] M. Giamberini, S. Fernandez Prieto, B. Tylkowski, Microencapsulation, Innovative Applications, DeGruyter, Berlin, 2015.

[4] V. Nedovic, A. Kalusevic, V. Manojlovic, S. Levic, B. Bugarski, An overview of encapsulation technologies for food applications, Procedia Food Sci. 1 (2011) 1806-1815.

[5] S.L. Percy, Improvement in drying and concentrating liquid substances by atomizing, in, Google Patents, 1872.

[6] B.N. Estevinho, F. Rocha, L. Santos, A. Alves, Microencapsulation with chitosan by spray drying for industry applications - A review, Trends Food Sci Technol. 31 (2013) 138-155.

[7] C. Turchiuli, M.T. Jimenez Munguia, M. Hernandez Sanchez, H. Cortes Ferre, E. Dumoulin, Use of different supports for oil encapsulation in powder by spray drying, Powder Technol. 255 (2014) 103-108.

[8] B. Tylkowski, M. Nowak, I. Tsibranska, A. trojanowska, Ł. Maecinkiewicz, R. Garcia Valls, T. Gumi, M. Giamberini, R. Jastrzab, Concentration and fractionation of polyphenols by membrane operations, Curr Pharm Des. 22 (2016) 1-1.

[9] C. Dima, L. Pătraşcu, A. Cantaragiu, P. Alexe, Ş. Dima, The kinetics of the swelling process and the release mechanisms of Coriandrum sativum L. essential oil from chitosan/alginate/inulin microcapsules, Food Chem. 195 (2016) 39-48.

[10] G.S. Vishwakarma, N. Gautam, J.N. Babu, S. Mittal, V. Jaitak, Polymeric Encapsulates of Essential Oils and Their Constituents: A Review of Preparation Techniques, Characterization, and Sustainable Release Mechanisms, Polym Rev. 56 (2016) 668-701.

[11] S. Beirão-da-Costa, C. Duarte, A.I. Bourbon, A.C. Pinheiro, M.I.N. Januário, A.A. Vicente, M.L. Beirão-da-Costa, I. Delgadillo, Inulin potential for encapsulation and controlled delivery of Oregano essential oil, Food Hydrocoll. 33 (2013) 199-206.

[12] S. Beirão da Costa, C. Duarte, A.I. Bourbon, A.C. Pinheiro, A.T. Serra, M. Moldão Martins, M.I. Nunes Januário, A.A. Vicente, I. Delgadillo, C. Duarte, M.L. Beirão da Costa, Effect of the matrix system in the delivery and in vitro bioactivity of microencapsulated Oregano essential oil, J Food Eng. 110 (2012) 190-199.

[13] R.V.d.B. Fernandes, S.V. Borges, D.A. Botrel, Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil, Carbohydr Polym. 101 (2014) 524-532.

[14] R.V.d.B. Fernandes, D.A. Botrel, E.K. Silva, S.V. Borges, C.R.d. Oliveira, M.I. Yoshida, J.P.d.A. Feitosa, R.C.M. de Paula, Cashew gum and inulin: New alternative for ginger essential oil microencapsulation, Carbohydr Polym. 153 (2016) 133-142.

[15] S.K.I.A.C.N.M.B. F. Gibbs, Encapsulation in the food industry: a review, Int J Food Sci Nutr. 50 (1999) 213-224.

[16] S. Strasser, M. Neureiter, M. Geppl, R. Braun, H. Danner, Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria, J Appl Microbiol. 107 (2009) 167-177.

[17] D. Schell, C. Beermann, Fluidized bed microencapsulation of Lactobacillus reuteri with sweet whey and shellac for improved acid resistance and in-vitro gastro-intestinal survival, Food Res Int. 62 (2014) 308-314.

[18] S.J. Risch, Encapsulation of Flavors by Extrusion, Flavor Encapsulation, ACS, 370 (1988) 103-109.

[19] A. Nussinovitch, Liquid-Core Beads and Their Applications in Food, Biotechnology, and Other Fields, in: Polymer Macro- and Micro-Gel Beads: Fundamentals and Applications, Springer New York, New York, NY, 2010, pp. 163-189.

[20] M. Whelehan, I.W. Marison, Microencapsulation using vibrating technology, J Microencapsul. 28 (2011) 669-688.

[21] S. Abbas, C. Da Wei, K. Hayat, Z. Xiaoming, Ascorbic Acid: Microencapsulation Techniques and Trends—A Review, Food Res Int. 28 (2012) 343-374.

[22] P. Pasukamonset, O. Kwon, S. Adisakwattana, Alginate-based encapsulation of polyphenols from Clitoria ternatea petal flower extract enhances stability and biological activity under simulated gastrointestinal conditions, Food Hydrocoll. 61 (2016) 772-779.

[23] T. Shinde, D. Sun-Waterhouse, J. Brooks, Co-extrusion Encapsulation of Probiotic Lactobacillus acidophilus Alone or Together with Apple Skin Polyphenols: An Aqueous and Value-Added Delivery System Using Alginate, Food Bioproc Tech. 7 (2014) 1581-1596.

[24] B. Tylkowski, I. Tsibranska, Polyphenols encapsulation – application of innovation technologies to improve stability of natural products, in: M. Giamberini, S. Fernandez Prieto, B. Tylkowski (Eds), Microencapsulation, Innovative Applications, DeGruyter, Berlin, 20152015, pp. 97-113.

[25] I. Tsibranska, B. Tylkowski, R. Kochanov, K. Alipieva, Extraction of biologically active compounds from Sideritis ssp. L, Food and Bioproducts Proc. 89 (2011) 273-280.

[26] M.P. Silva, F.L. Tulini, M.M. Ribas, M. Penning, C.S. Fávaro-Trindade, D. Poncelet, Microcapsules loaded with the probiotic Lactobacillus paracasei BGP-1 produced by co-extrusion technology using alginate/shellac as wall material: Characterization and evaluation of drying processes, F Food Res Int. 89 (2016) 582-590.

[27] B.K. Green, S. Lowell, Oil-containing microscopic capsules and method of making them, in, Google Patents, 1957.

[28] G. Dardelle, P. Beaussoubre, P. Erni, Hybrid coacervate capsules, in, Google Patents, 2015.

[29] S. Gouin, Microencapsulation: Industrial appraisal of existing technologies and trends, Trends Food Sci Technol. 15 (2004) 330-347.

[30] C.S. Wang, G. Natale, N. Virgilio, M.C. Heuzey, Synergistic gelation of gelatin B with xanthan gum, Food Hydrocoll. 60 (2016) 374-383.

[31] C.G. De Kruif, F. Weinbreck, R. De Vries, Complex coacervation of proteins and anionic polysaccharides, Curr Opin Colloid Interface Sci. 9 (2004) 340-349.

[32] T.B. Wagoner, E.A. Foegeding, Whey protein–pectin soluble complexes for beverage applications, Food Hydrocoll. 63 (2017) 130-138.

[33] C. Schmitt, L. Aberkane, C. Sanchez, Protein-polysaccharide complexes and coacervates, in: G.O. Phillips and P.A. Williams (Eds.), Handbook of Hydrocolloids: 2nd Edition, The North East Wales Institute, UK, 2009, pp. 420-476.

[34] C.Y. Lii, S.C. Liaw, V.F. Lai, P. Tomasik, Xanthan gum-gelatin complexes, Eur Polym J. 38 (2002) 1377-1381.

[35] Y. Yeo, E. Bellas, W. Firestone, R. Langer, D.S. Kohane, Complex coacervates for thermally sensitive controlled release of flavor compounds, J Agric Food Chem. 53 (2005) 7518-7525.

[36] D.V. Mendanha, S.E. Molina Ortiz, C.S. Favaro-Trindade, A. Mauri, E.S. Monterrey-Quintero, M. Thomazini, Microencapsulation of casein hydrolysate by complex coacervation with SPI/pectin, Food Res Int. 42 (2009) 1099-1104.

[37] D.J. Burgess, O.N. Singh, Spontaneous Formation of Small Sized Albumin/acacia Coacervate Particles, J Pharm Pharmacol. 45 (1993) 586-591.

[38] I. Chourpa, V. Ducel, J. Richard, P. Dubois, F. Boury, Conformational modifications of α gliadin and globulin proteins upon complex coacervates formation with gum arabic as studied by Raman microspectroscopy, Biomacromolecules. 7 (2006) 2616-2623.

[39] Z. Yang, Z. Peng, J. Li, S. Li, L. Kong, P. Li, Q. Wang, Development and evaluation of novel flavour microcapsules containing vanilla oil using complex coacervation approach, Food Chem. 145 (2014) 272-277.

[40] G.-Q. Huang, X.-N. Han, J.-X. Xiao, L.-Y. Cheng, Effects of coacervation acidity on the genipin crosslinking action and intestine-targeted delivery potency of the O-carboxymethyl chitosan–gum arabic coacervates, Int. J Poly Mat and Poly Biomat. 66 (2017) 89-96.

[41] L. Upadhyaya, J. Singh, V. Agarwal, R.P. Tewari, Biomedical applications of carboxymethyl chitosans, Carbohydr Polym. 91 (2013) 452-466.

[42] H. Chen, W. Ouyang, C. Martoni, S. Prakash, Genipin Cross-Linked Polymeric Alginate-Chitosan Microcapsules for Oral Delivery: In-Vitro Analysis, Int J Polym Sci. 2009 (2009) 16.

[43] G. Decher, J.-D. Hong, Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces, Makromolekulare Chemie. Macromol Symp. 46 (1991) 321-327.

[44] N.-P.K. Humblet-Hua, E. van der Linden, L.M.C. Sagis, Microcapsules with Protein Fibril Reinforced Shells: Effect of Fibril Properties on Mechanical Strength of the Shell, J Agric Food Chem. 60 (2012) 9502-9511.

[45] M.-L. De Temmerman, J. Demeester, F. De Vos, S.C. De Smedt, Encapsulation Performance of Layer-by-Layer Microcapsules for Proteins, Biomacromolecules. 12 (2011) 1283-1289.

[46] F.F. Yu, H. Zou, Y.Q. Zhong, [Research progress of layer-by-layer self-assembly technique in drug delivery], Yao xue xue bao. 47 (2012) 332-338.

[47] M. Noshad, M. Mohebbi, F. Shahidi, A. Koocheki, Effect of layer-by-layer polyelectrolyte method on encapsulation of vanillin, Int J Biol Macromol. 81 (2015) 803-808.

[48] S. Ogawa, E.A. Decker, D.J. McClements, Production and Characterization of O/W Emulsions Containing Cationic Droplets Stabilized by Lecithin−Chitosan Membranes, J Agric Food Chem. 51 (2003) 2806-2812.

[49] R. Pommersheim, J. Schrezenmeir, W. Vogt, Immobilization of enzymes by multilayer microcapsules, Macromol Chem Phys. 195 (1994) 1557-1567.

[50] O. Gaserod, A. Sannes, G. Skjak-Braek, Microcapsules of alginate-chitosan. II. A study of capsule stability and permeability, Biomaterials. 20 (1999) 773-783.

[51] A. Bartkowiak, D. Hunkeler, Alginate−Oligochitosan Microcapsules. II. Control of Mechanical Resistance and Permeability of the Membrane, Chemistry of Materials. 12 (2000) 206-212.

[52] F. Salaön, Microencapsulation by Interfacial Polymerization, in: Encapsulation Nanotechnologies, John Wiley & Sons, Inc., New York, 2013, pp. 137-173.

[53] E.L. Wittbecker, P.W. Morgan, Interfacial polycondensation. I, J Polym Sci. 40 (1959) 289-297.

[54] R.G. Beaman, P.W. Morgan, C.R. Koller, E.L. Wittbecker, E.E. Magat, Interfacial polycondensation. III. Polyamides, Journal of Polymer Science, 40 (1959) 329-336.

[55] W.M. Eareckson, Interfacial polycondensation. X. Polyphenyl esters, J Polym Sci. 40 (1959) 399-406.

[56] P.W. Morgan, S.L. Kwolek, Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces, J Polym Sci A. 34 (1996) 531-559.

[57] T.M.S. Chang, Semipermeable Microcapsules, Science. 146 (1964) 524-525.

[58] S. Torza, S.G. Mason, Coalescence of Two Immiscible Liquid Drops, Science. 163 (1969) 813-814.

[59] G.R. Fink, Gene-Enzyme Relations in Histidine Biosynthesis in Yeast, Science.146 (1964) 525-527.

[60] G.B. Beestman, J.M. Deming, Encapsulation by interfacial polycondensation, in, Google Patents, 1983.

[61] J. Yáñez-Fernández, E.G. Ramos-Ramírez, J.A. Salazar-Montoya, Rheological characterization of dispersions and emulsions used in the preparation of microcapsules obtained by interfacial polymerization containing Lactobacillus sp, Eur Food Res Technol. 226 (2007) 957.

[62] C. Sanchez, D. Renard, P. Robert, C. Schmitt, J. Lefebvre, Structure and rheological properties of acacia gum dispersions, Food Hydrocoll. 16 (2002) 257-267.

[63] T. Omoto, Y. Uno, I. Asai, The latest technologies for the application of gellan gum, in: K. Nishinari (Ed.) Physical Chemistry and Industrial Application of Gellan Gum, Springer Berlin Heidelberg, Berlin, Heidelberg, 1999, pp. 123-126.

[64] D. Meyer, R. Becker, M.R. Gumbmann, P. Vohra, H. Neukom, R.M. Saunders, Processing, composition, nutritional evaluation, and utilization of mesquite (Prosopis spp.) pods as a raw material for the food industry, J Agric Food Chem. 34 (1986) 914-919.