Advances on High Temperature Pd-Based Membranes and Membrane Reactors for Hydrogen Purifcation and Production

Document Type: Review Paper

Authors

1 Eindhoven University of Technology

2 Tecnalia

Abstract

Membrane technology applied in the chemical and energy industry has the potential to overcome many drawbacks of conventional technologies such as the need of large volume plants and large CO2 emissions. Recently, it has been reported that this technology might become more competitive when operated at high temperatures. This is mostly associated with the required of heat integration at large scale. However, good membrane stability combined with high permeation rates and high perm-selectivities, has only been achieved at intermediate/low temperatures (< 500 °C). When operated at these lower temperatures in a fully integrated plant, there is often the need of electricity import, which strongly decreases the process efciency and renders the membrane-based technology less competitive compared to conventional technologies. To improve the competitiveness of membrane technology further developments are required, demanding in particular an improvement in the preparation methods, the use of new materials and/or the development of novel reactor confgurations. In this study, a comprehensive review on the latest advancements in membrane technology for H2 separation at high temperature is presented. Special attention is given to the membranes prepared and presented in the literature in the last years for high-temperature applications, as well as the different membrane reactor confgurations that have proposed, tested and evaluated for different reaction systems at elevated temperatures. Since concerns about the need of high temperatures in membrane technology are relatively new, this review is limited to the results reported in the literature during the last five years.

Graphical Abstract

Advances on High Temperature Pd-Based Membranes and Membrane Reactors for Hydrogen Purifcation and Production

Highlights

• Review on high temperature membrane reactors for H2 production
• Discussion on different preparation methods for Pd-based membranes
• Overview on recent works using Pd-based membranes above 500 °C
• Guidelines for further enhancement of membrane reactor technology

Keywords

Main Subjects


[1] IEA, Energy technology perspectives: scenarios and strategies to 2050, Paris, France: OECD/IEA, 2010.

[2] IPCC, IPCC special report on carbon dioxide capture and storage, Cambridge, UK: Cambridge University Press, 2005.

[3] S.D. Kenarsari, D. Yang, G. Jiang, S. Zhang, J. Wang, A.G. Russell, Q. Wei, M. Fan, Review of recent advances in carbon dioxide separation and capture, RSC Adv. 3 (2013) 22739–22773. doi:10.1039/C3RA43965H.

[4] V. Spallina, D. Pandolfo, A. Battistella, M.C. Romano, M. van Sint Annaland, F. Gallucci, Techno-economic assessment of membrane assisted fluidized bed reactors for pure H2 production with CO2 capture, Energy Convers. Manag. 120 (2016) 257–273. doi:10.1016/j.enconman.2016.04.073.

[5] M. Ball, M. Wietschel, The future of hydrogen – opportunities and challenges, Int. J. Hydrogen Energy. 34 (2009) 615–627. doi:10.1016/j.ijhydene.2008.11.014.

[6] F. Gallucci, E. Fernandez, P. Corengia, M. van Sint Annaland, Recent advances on membranes and membrane reactors for hydrogen production, Chem. Eng. Sci. 92 (2013) 40-66. doi:10.1016/j.ces.2013.01.008.

[7] T. Boeltken, A. Wunsch, T. Gietzelt, P. Pfeifer, R. Dittmeyer, Ultra-compact microstructured methane steam reformer with integrated Palladium membrane for on-site production of pure hydrogen: Experimental demonstration, Int. J. Hydrogen Energy. 39 (2014) 18058–18068. doi:10.1016/j.ijhydene.2014.06.091.

[8] F. Gallucci, A. Basile, Pd-Ag membrane reactor for steam reforming reactions: A comparison between different fuels, Int. J. Hydrogen Energy. 33 (2008) 1671-1687. doi:10.1016/j.ijhydene.2008.01.010.

[9] E. Kikuchi, S. Uemiya, T. Matsuda, Hydrogen Production from Methane Steam Reforming Assisted by Use of Membrane Reactor, Stud. Surf. Sci. Catal. 61 (1991) 509–515. doi: 10.1016/S0167-2991(08)60117-2

[10] F. Gallucci, L. Paturzo, A. Famà, A. Basile, Experimental Study of the Methane Steam Reforming Reaction in a Dense Pd/ Ag Membrane Reactor, Ind. Eng. Chem. Res. 43 (2004) 928-933. doi: 10.1021/ie030485a

[11] F. Gallucci, A. Comite, G. Capannelli, A. Basile, Steam Reforming of Methane in a Membrane Reactor : An Industrial Case Study, Ind. Eng. Chem. Res. 45 (2006) 2994–3000. doi: 10.1021/ie058063j

[12] G.S. Madia, G. Barbieri, E. Drioli, Theoretical and experimental analysis of methane steam reforming in a membrane reactor, Can. J. Chem. Eng. 77 (1999) 698–706. doi: 10.1002/cjce.5450770411

[13] L. Roses, F. Gallucci, G. Manzolini, S. Campanari, M. van Sint Annaland, Comparison between fixed bed and fluidized bed membrane reactor configurations for PEM based micro-cogeneration systems, Chem. Eng. J. 171 (2011) 1415–1427. doi:10.1016/j.cej.2011.05.061.

[14] F. Gallucci, E. Fernandez, J.A. Medrano, D.A. Pacheco Tanaka, M. van Sint Annaland, Pd-Based Membranes for High Temperature Applications: Current Status, Austin Chem Eng. 3(1) (2016) 1025.

[15] Z. Tao, L. Yan, J. Qiao, B. Wang, L. Zhang, J. Zhang, A review of advanced proton-conducting materials for hydrogen separation, Prog. Mater. Sci. 74 (2015) 1-50. doi:10.1016/j.pmatsci.2015.04.002.

[16] W.A. Rosensteel, S. Ricote, N.P. Sullivan, Hydrogen permeation through dense BaCe0.8Y0.2O3-δ - Ce0.8Y0.2O2-δ composite-ceramic hydrogen separation membranes, Int. J. Hydrogen Energy. 41 (2016) 2598-2606. doi:10.1016/j.ijhydene.2015.11.053.

[17] J.W. Phair S P S Badwal, Review of proton conductors for hydrogen separation, Ionics (Kiel). 12 (2006) 103–115. doi:10.1007/s11581-006-0016-4.

[18] U.B. Balachandran, T.H. Lee, C.Y. Park, J.E. Emerson, J.J. Picciolo, S.E. Dorris, Dense cermet membranes for hydrogen separation, Sep. Purif. Technol. 121 (2014) 54–59. doi:10.1016/j.seppur.2013.10.001.

[19] E. Rebollo, C. Mortalo, S. Escola, S. Boldrini, S. Barison, M. Serra, M. Fabrizio, Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe0.65Zr0.20Y0.15O3-d and Y- or Gd-doped ceria, Energy Environ. Sci. 8 (2015) 3675–3686. doi:10.1039/C5EE01793A.

[20] F. Lewis, The palladium hydrogen system, Academic Press, London, 1967.

[21] S. Yun, S. Ted Oyama, Correlations in palladium membranes for hydrogen separation: A review, J. Memb. Sci. 375 (2011) 28–45. doi:10.1016/j.memsci.2011.03.057

[22] A.F. Sammells, M. V. Mundschau, Nonporous inorganic membranes: for chemical processing, Wiley-VCH, 2006.

[23] F. Behr, B. Kugler, M. Pietsch, W. Weirich, Non-porous hydrogen diffusion membrane and utilization thereof, US 4781734 A, 1988.

[24] KITCO, (2016).

[25] J. Douglas Way, P.M. Thoen, Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation, Pittsburgh, PA, and Morgantown, WV, 2006. doi:10.2172/898816.

[26] P.P. Mardilovich, Y. She, Y.H. Ma, M.-H. Rei, Defect-free palladium membranes on porous stainless-steel support, AIChE J. 44 (1998) 310–322. doi:10.1002/aic.690440209.

[27] J.A. Medrano, E. Fernandez, J. Melendez, M. Parco, D.A. Pacheco-Tanaka, M. van Sint Annaland, F. Gallucci, Pd-based metallic supported membranes: High-temperature stability and fluidized bed reactor testing, Int. J. Hydrogen Energy. 41 (2016) 8706–8718. doi:10.1016/j.ijhydene.2015.10.094.

[28] E. Fernandez, J.A. Medrano, J. Melendez, M. Parco, J.L. Viviente, M. van Sint Annaland, F. Gallucci, D.A. Pacheco-Tanaka, Preparation and characterization of metallic supported thin Pd–Ag membranes for hydrogen separation, Chem. Eng. J. 305 (2016) 182–190. doi:10.1016/j.cej.2015.09.119.

[29] E. Fernandez, K. Coenen, A. Helmi, J. Melendez, J. Zuñiga, D. A. Pacheco-Tanaka, M. van Sint Annaland, F. Gallucci, Preparation and characterization of thin-film Pd–Ag supported membranes for high-temperature applications, Int. J. Hydrogen Energy. 40 (2015) 13463-13478. doi:10.1016/j.ijhydene.2015.08.050.

[30] REB Research &amp; Consulting, 2016.

[31] F. Guazzone, Y.H. Ma, Leak growth mechanism in composite Pd membranes prepared by the electroless deposition method, AIChE J. 54 (2008) 487–494. doi:10.1002/aic.11397.

[32] H.W. Abu El Hawa, S.N. Paglieri, C.C. Morris, A. Harale, J. Douglas Way, Identification of thermally stable Pd-alloy composite membranes for high temperature applications, J. Memb. Sci. 466 (2014) 151–160. doi:10.1016/j.memsci.2014.04.029.

[33] T.A. Peters, M. Stange, H. Klette, R. Bredesen, High pressure performance of thin Pd-23%Ag/stainless steel composite membranes in water gas shift gas mixtures; influence of dilution, mass transfer and surface effects on the hydrogen flux, J. Memb. Sci. 316 (2008) 119–127. doi:10.1016/j.memsci.2007.08.056

[34] J. Okazaki, T. Ikeda, D.A. Pacheco-Tanaka, K. Sato, T.M. Suzuki, F. Mizukami, An investigation of thermal stability of thin palladium–silver alloy membranes for high temperature hydrogen separation, J. Memb. Sci. 366 (2011) 212–219. doi:10.1016/j.memsci.2010.10.011.

[35] J. Okazaki, T. Ikeda, D.A. Pacheco-Tanaka, M.A. Llosa Tanco, Y. Wakui, K. Sato, F. Mizukami, T.M. Suzuki, Importance of the support material in thin palladium composite membranes for steady hydrogen permeation at elevated temperatures., Phys. Chem. Chem. Phys. 11 (2009) 8632–8638. doi:10.1039/b909401f.

[36] S.N. Paglieri, K.Y. Foo, J.D. Way, J.P. Collins, D.L. Harper-Nixon, A New Preparation Technique for Pd/Alumina Membranes with Enhanced High-Temperature Stability, Ind. Eng. Chem. Res. 38 (1999) 1925–1936. doi:10.1021/ie980199c.

[37] K. Zhang, H. Gao, Z. Rui, P. Liu, Y. Li, Y.S. Lin, High-Temperature Stability of Palladium Membranes on Porous Metal Supports with Different Intermediate Layers, Ind. Eng. Chem. Res. 48 (2009) 1880–1886. doi:10.1021/ie801417w.

[38] G. Zeng, H. Jia, A. Goldbach, L. Zhao, S. Miao, Hydrogen-induced high-temperature segregation in palladium silver membranes, Phys. Chem. Chem. Phys. 16 (2014) 25330–25336. doi:10.1039/C4CP03245D.

[39] H. Yakabe, H. Kurokawa, Y. Shirasaki, I. Yasuda, 14 – Operation of a palladium membrane reformer system for hydrogen production: the case of Tokyo Gas, in: Palladium Membr. Technol. Hydrog. Prod. Carbon Capture Other Appl., 2015: pp. 303–318. doi:10.1533/9781782422419.2.303.

[40] A. Morita, H. Fukui, H. Tadano, S. Hayashi, J. Hasegawa, M. Niinomi, Alloying titanium and tantalum by cold crucible levitation melting (CCLM) furnace, Mater. Sci. Eng. A. 1 (2000) 208–213.

[41] H.W. Abu El Hawa, S.-T.B. Lundin, S.N. Paglieri, A. Harale, J. Douglas Way, The influence of heat treatment on the thermal stability of Pd composite membranes, J. Memb. Sci. 494 (2015) 113–120. doi:10.1016/j.memsci.2015.07.021.

[42] M. Miyamoto, M. Tokiwa, Y. Oumi, S. Uemiya, Effect of adhesion of metals on deterioration of Pd and Pd alloy membranes, J. Alloys Compd. 577 (2013) 445–450. doi:10.1016/j.jallcom.2013.06.034.

[43] E.O. Smigelskas, A. D.; Kirkendall, Zinc Diffusion in Alpha Brass, Trans. AIME. 171 (1947) 130–142.

[44] W. Chen, X. Hu, R. Wang, Y. Huang, On the assembling of Pd/ceramic composite membranes for hydrogen separation, Sep. Purif. Technol. 72 (2010) 92–97. doi:10.1016/j.seppur.2010.01.010.

[45] D. Pizzi, R. Worth, M. Giacinti Baschetti, G.C. Sarti, K. Noda, Hydrogen permeability of 2.5μm palladium–silver membranes deposited on ceramic supports, J. Memb. Sci. 325 (2008) 446–453. doi:10.1016/j.memsci.2008.08.020.

[46] S. Liguori, A. Iulianelli, F. Dalena, P. Pinacci, F. Drago, M. Broglia, Y. Huang, A. Basile, Performance and Long-Term Stability of Pd/PSS and Pd/Al2O3 Membranes for Hydrogen Separation, Membranes (Basel). 4 (2014) 143–162. doi:10.3390/membranes4010143.

[47] F. van Berkel, C. Hao, C. Bao, C. Jiang, H. Xu, J. Morud, et al., Pd-membranes on their Way Towards Application for CO2-capture, Energy Procedia. 37 (2013) 1076–1084. doi:10.1016/j.egypro.2013.05.204.

[48] F. Gallucci, M. van Sint Annaland, J.A.M. Kuipers, Autothermal reforming of methane with integrated CO2 capture in a novel fluidized bed membrane reactor. Part 1: Experimental demonstration, Top. Catal. 51 (2008) 133-145. doi:10.1007/s11244-008-9126-8.

[49] J.R. Rostrup-Nielsen, New aspects of syngas production and use, Catal. Today. 63 (2000) 159–164.

[50] I. Martínez, M.C. Romano, P. Chiesa, G. Grasa, R. Murillo, Hydrogen production through sorption enhanced steam reforming of natural gas: Thermodynamic plant assessment, Int. J. Hydrogen Energy. 38 (2013) 15180–15199. doi:http://dx.doi.org/10.1016/j.ijhydene.2013.09.062.

[51] J.A. Medrano, V. Spallina, M. van Sint Annaland, F. Gallucci, Thermodynamic analysis of a membrane-assisted chemical looping reforming reactor concept for combined H2 production and CO2 capture, Int. J. Hydrogen Energy. 39 (2014) 4725-4738. doi:10.1016/j.ijhydene.2013.11.126.

[52] D. Liuzzi, F.J. Pérez-Alonso, J.L.G. Fierro, S. Rojas, F.L. van Wijk, I. Roghair, et al., Catalytic membrane reactor for the production of biofuels, Catal. Today. 268 (2015) 37-45. doi:10.1016/j.cattod.2015.11.014.

[53] M. Sarić, Y.C. Van Delft, R. Sumbharaju, D.F. Meyer, A. De Groot, Steam reforming of methane in a bench-scale membrane reactor at realistic working conditions, Catal. Today. 193 (2012) 74–80. doi:10.1016/j.cattod.2012.04.009.

[54] B. Dittmar, A. Behrens, N. Schödel, M. Rüttinger, T. Franco, G. Straczewski, et al., Methane steam reforming operation and thermal stability of new porous metal supported tubular palladium composite membranes, Int. J. Hydrogen Energy. 38 (2013) 8759–8771. doi:10.1016/j.ijhydene.2013.05.030.

[55] T. Kume, Y. Ikeda, T. Iseki, H. Yakabe, H. Tanaka, H. Hikosaka, et al., Performance evaluation of membrane on catalyst module for hydrogen production from natural gas, Int. J. Hydrogen Energy. 38 (2013) 6079–6084. doi:10.1016/j.ijhydene.2013.01.103.

[56] G. di Marcoberardino, F. Sosio, G. Manzolini, S. Campanari, Fixed bed membrane reactor for hydrogen production from steam methane reforming: Experimental and modeling approach, Int. J. Hydrogen Energy. 40 (2015) 7559–7567. doi:10.1016/j.ijhydene.2014.11.045.

[57] M. Patrascu, M. Sheintuch, On-site pure hydrogen production by methane steam reforming in high flux membrane reactor: Experimental validation, model predictions and membrane inhibition, Chem. Eng. J. 262 (2015) 862–874. doi:10.1016/j.cej.2014.10.042.

[58] H.W. Abu El Hawa, S.N. Paglieri, C.C. Morris, A. Harale, J. Douglas Way, Application of a Pd–Ru composite membrane to hydrogen production in a high temperature membrane reactor, Sep. Purif. Technol. 147 (2015) 388–397. doi:10.1016/j.seppur.2015.02.005.

[59] X. Wu, C. Wu, S. Wu, Dual-enhanced steam methane reforming by membrane separation of H2 and reactive sorption of CO2, Chem. Eng. Res. Des. 96 (2015) 150–157. doi:10.1016/j.cherd.2015.02.010.

[60] A.S. Kyriakides, S. Voutetakis, S. Papadopoulou, P. Seferlis, Optimization of an experimental membrane reactor for low-temperature methane steam reforming, Clean Technol. Environ. Policy. (2016). doi:10.1007/s10098-016-1167-2.

[61] F.A. Silva, C.E. Hori, A.M. Da Silva, L. V. Mattos, J. Múnera, L. Cornaglia, et al., Hydrogen production through CO2 reforming of CH4 over Pt/CeZrO2/Al2O3 catalysts using a Pd-Ag membrane reactor, Catal. Today. 193 (2012) 64–73. doi:10.1016/j.cattod.2012.04.014.

[62] F.R. Garcia-Garcia, M.A. Soria, C. Mateos-Pedrero, A. Guerrero-Ruiz, I. Rodríguez-Ramos, K. Li, Dry reforming of methane using Pd-based membrane reactors fabricated from different substrates, J. Memb. Sci. 435 (2013) 218–225. doi:10.1016/j.memsci.2013.02.029.

[63] S. Sumrunronnasak, S. Tantayanon, S. Kiatgamolchai, T. Sukonket, Improved hydrogen production from dry reforming reaction using a catalytic packed-bed membrane reactor with Ni-based catalyst and dense PdAgCu alloy membrane, Int. J. Hydrogen Energy. 41 (2016) 2621–2630. doi:10.1016/j.ijhydene.2015.10.129.

[64] Y. Yan, Y. Cui, L. Zhang, L. Li, J. Zhang, Y. Chen, et al., Experimental investigation of methane auto-thermal reforming in hydrogen-permeable membrane reactor for pure hydrogen production, Int. J. Hydrogen Energy. 41 (2016) 13069–13076. doi:10.1016/j.ijhydene.2016.06.076.

[65] E. López, N.J. Divins, J. Llorca, Hydrogen production from ethanol over Pd-Rh/CeO2 with a metallic membrane reactor, Catal. Today. 193 (2012) 145–150. doi:10.1016/j.cattod.2012.06.030.

[66] R. Espinal, A. Anzola, E. Adrover, M. Roig, R. Chimentao, F. Medina, et al., Durable ethanol steam reforming in a catalytic membrane reactor at moderate temperature over cobalt hydrotalcite, Int. J. Hydrogen Energy. 39 (2014) 10902–10910. doi:10.1016/j.ijhydene.2014.05.127.

[67] A. Hedayati, O. Le Corre, B. Lacarriere, J. Llorca, Experimental and exergy evaluation of ethanol catalytic steam reforming in a membrane reactor, Catal. Today. 268 (2016) 68–78. doi:10.1016/j.cattod.2016.01.058.

[68] K.H. Lin, A.C.C. Chang, W.H. Lin, S.H. Chen, C.Y. Chang, H.F. Chang, Autothermal steam reforming of glycerol for hydrogen production over packed-bed and Pd/Ag alloy membrane reactors, Int. J. Hydrogen Energy. 38 (2013) 12946–12952. doi:10.1016/j.ijhydene.2013.04.134.

[69] S.C. Kilicarslan, M. Dogan, T. Dogu, Contribution of Pd Membrane to Dehydrogenation of Isobutane Over a New Mesoporous Cr/MCM-41 Catalyst, Int. J. Chem. React. Eng. 14 (2016) 727–736. doi:10.1515/ijcre-2015-0031.

[70] A. Caravella, G. Barbieri, E. Drioli, Concentration polarization analysis in self-supported Pd-based membranes, Sep. Purif. Technol. 66 (2009) 613–624. doi:10.1016/j.seppur.2009.01.008.

[71] A. Caravella, F. Scura, G. Barbieri, E. Drioli, Inhibition by CO and Polarization in Pd-Based Membranes: A Novel Permeation Reduction Coefficient, J. Phys. Chem. B. 114 (2010) 12264–12276. doi: 10.1021/jp104767q.

[72] S.A.R.K. Deshmukh, S. Heinrich, L. Mörl, M. van Sint Annaland, J.A.M. Kuipers, Membrane assisted fluidized bed reactors: Potentials and hurdles, Chem. Eng. Sci. 62 (2007) 416–436. doi:10.1016/j.ces.2006.08.062.

[73] F. Gallucci, M. van Sint Annaland, J.A.M. Kuipers, Theoretical comparison of packed bed and fluidized bed membrane reactors for methane reforming, Int. J. Hydrogen Energy. 35 (2010) 7142–7150. doi:10.1016/j.ijhydene.2010.02.050.

[74] A.M. Adris, C.J. Lim, J.R. Grace, The fluidized-bed membrane reactor for steam methane reforming: Model verification and parametric study, Chem. Eng. Sci. 52 (1997) 1609–1622. doi: 10.1016/S0009-2509(96)00511-8.

[75] L. Roses, F. Gallucci, G. Manzolini, M. van Sint Annaland, Experimental study of steam methane reforming in a Pd-based fluidized bed membrane reactor, Chem. Eng. J. 222 (2013) 307-320. doi:10.1016/j.cej.2013.02.069.

[76] J.A. Medrano, I. Julián, J. Herguido, M. Menéndez, Pd-Ag membrane coupled to a two-zone fluidized bed reactor (TZFBR) for propane dehydrogenation on a Pt-Sn/MgAl2O4 catalyst, Membranes (Basel). 3 (2013) 69–86. doi:10.3390/membranes3020069.

[77] J.A. Medrano, I. Julian, F.R. Garcia-Garcia, K. Li, J. Herguido, M. Menendez, Two-zone fluidized bed reactor (TZFBR) with palladium membrane for catalytic propane dehydrogenation: Experimental performance assessment, Ind. Eng. Chem. Res. 52 (2013) 3723–3731. doi:10.1021/ie303185p.