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•	 Modified logistic sigmoid function (MLSF) is applied 
for modeling the flow rate versus pressure curve of the 
bubble point gas transport method.

•	 For binodal pore size distribution, the experimental 
flow rate versus pressure curve can be split into two 
component pore size distributions by using MLSF.

•	 The binodal pore size distribution is constructed by 
combining the individual pore size distributions.
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1. Introduction

The main purpose of membranes is to control the entry of incoming 
materials which can be molecules, ions, or other small particles [1,2]. 

Recently, membrane processes have been found as an important part of 
chemical technologies with various applications such as wastewater treatment, 

Journal of Membrane Science & Research

journal homepage: www.msrjournal.com

The bubble point gas transport model is often used to determine the membrane pore size distribution due to its easiness of application. The conventional approach, in which the 
experimentally obtained flow rate pressure curve (hereafter called Q-P curve) is analyzed using the methods proposed by Martínez et al. and Khayat et al., is effective but becomes 
less accurate for the distribution of small pores. Particularly, when there are two pore size distributions, the distribution calculated for the smaller pore sizes is not very reliable. The 
present work challenges this problem by splitting the overall Q-P curve into two components, one from the distribution of small pores and the other from the larger pores, while 
modeling the Q-P curve with the modified logistic sigmoid function (MLSF). Once the overall Q-P curve is split into two components, the distribution parameters, i.e., mean pore 
size and standard deviations, can be obtained for each component distribution. The overall pore size distribution curve is then drawn by combining both distributions. The method is 
thoroughly described in this work and applied to the experimental Q-P data reported in the literature.

https://doi.org/10.22079/jmsr.2023.1973408.1577
http://www.msrjournal.com/article_43282.html
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desalination, gas and vapor separation, etc. [2]. The pore size of a membrane is 

one of the most significant factors governing its selectivity [3] since an inverse 

relationship exists between pore size and rejection. As well, there is a direct 

relationship between pore size and flux. Thus, membranes can be classified 

based on the pore size into microfiltration (MF), ultrafiltration (UF), 

nanofiltration (NF), and reverse osmosis (RO) membranes [4]. 

Both membrane users and manufacturers, as well as membrane scientists, 

emphasize the importance of membrane characterization in terms of pore size, 

pore size distribution, and solute or particle rejection efficiency for filtering 

membranes. The techniques used to characterize membranes by pore size and 

pore size distribution can be categorized into (1) approaches based on 

permeation and rejection performance utilizing reference molecules and 

particles [5], and (2) physical methods to measure the pore size and pore size 

distribution of a membrane. The following physical techniques are well-known 

for determining pore size and pore size distribution: microscopic observation, 

bubble pressure and gas transport, mercury porosimetry, liquid-vapor 

equilibrium, gas-liquid equilibrium (Permporometry), and liquid-solid 

equilibrium (Thermoporometry) [6]. Microscopic observation is a well-

established and common method of pore size analysis [7]. Visual information 

on membrane morphology, such as surface pore shape and size, their 

distributions, pore density, surface porosity, cross-sectional structure, etc., may 

be obtained directly through microscopic observation and image processing of 

micrographs [8]. How to prepare a membrane sample without creating any 

errors is one of the challenges of microscopic observation [9]. Also, 2D image 

analyses are limited to calculating the size of surface pores and ignore the 

internal pores [10].  

Some other ways are used to determine pore size and pore size distribution. 

The bubble gas transport mechanism is one of the most common methods of 

measuring pore size distribution. Bechhold developed the bubble gas transport 

method for the first time to measure the membrane's pore diameters in the early 

19th century [11]. The bubble point method is another name for this approach. 

This technique can only determine the membrane's maximum pore size, which 

corresponds to the lowest pressure needed to blow the initial gas bubble [12]. 

The pore size distribution is measurable by combining the bubble gas transport 

technique with gas permeation. This combined method is called the gas bubble 

point extended method [12]. For the characterization of membranes, including 

nano-fibrous, flat sheet, and capillary and hollow fiber membranes, the bubble 

gas transport method and the extended method are often utilized [13]. There 

are also other patents related to bubble gas transport methods [14].  

The method involves measuring the pressure needed to force gas through 

a wet membrane. The top side of a membrane is brought into contact with a 

liquid that seeps into all of the membrane's pores, while gas is in touch with the 

membrane's opposite side. The rate of flow of gas, Qv, wet, increases as 

transmembrane pressure difference, ∆𝑝, gradually increases [15]. The Qv, wet 

versus ∆𝑝 curve, called wet-curve (see Fig. 1) thus produced is hereafter called 

the Q-P curve. By considering viscous flow, Knudsen flow, or a combination 

of both for the gas flow mechanism in the pore, the membrane pore size 

distribution can be calculated. Based on this principle, several equations have 

been developed to calculate the pore size distribution. Among the equations, 

the ones developed by Martínez et al. [16] and its improved version of Khayet 

et al. [17], are often used for the calculation of the pore size distribution. 

Especially, according to the method of Khayet et al., the flow rate is also 

determined for the dry membrane, and it is called Qv, dry (Fig. 1). 
 

   
    j increases 
 

Fig. 1. Flow rate versus gas pressure (Q-P) curve obtained by the bubble gas transport 

method (brown line: dry-curve, blue line: wet-curve, yellow line: semi-dry (half-dry)). 

 

The ratio of the wet and dry flow rates (𝑄𝑣,𝑤𝑒𝑡(𝑗) and, 𝑄𝑣,𝑑𝑟𝑦(𝑗)) through 

the pores that are smaller than the pore diameter 𝑑𝑝(𝑗) is used to define 𝑔𝑎 

function: (Note ∆𝑝(𝑗) decreases and 𝑑𝑝(𝑗) increases as 𝑗 increases.) 
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The incremental flow rate ratio occurring through the jth pore is: 

 
( 1) ( 1)

( )
2

a a
d

g j g j
g j

 + − −
=

 
(2) 

 

Since the flow rate through a pore is proportional to the cross-sectional 

area of this particular pore, the number of the jth pore with the diameter of 𝑑𝑝(𝑗) 

is: 

 

2

( )
( )

( )

d

p

g j
n j K

d j
=

 
(3) 

 

where  

 

21

( )

( )

( )

a

n
d

j
p

g n
K

g j

d j=

=



 

(4) 

 

and it is a constant. 

And the cumulative distribution of the number of pores is: 

 

1
( ) ( )

j

a dk
n j n k

=
=  

(5) 

 

From Equation (1) and Fig. 1, it is obvious that both 𝑔𝑎
′ (𝑗 − 1) and 

𝑔𝑎
′ (𝑗 + 1) are nearly equal to 1 when j is small, and their difference is very 

small, making 𝑔𝑑(𝑗) obtained by equation (2) susceptible to a significant error 

when experimental 𝑔𝑎
′ s are used. The error is amplified when 𝑛(𝑗) is calculated 

by equation (3) for small j since 𝑑𝑝(𝑗) is small. Therefore, the pore size 

distribution calculated by the above method becomes less reliable as the pore 

size becomes small. This is especially true in the case of the binodal distribution 

where the Q-P curve for small pores appears only in the high-pressure range as 

shown in Fig. 2. 

 

 
Fig. 2. Indicating the small pore region of the Q-P curve. 

 

This problem can be solved when the overall Q-P curve is split into two 

component Q-P curves and the pore size distribution is calculated for each 

individual Q-P curve, separately. 

Recently, a new method to calculate the pore size distribution was 

proposed [3]. This method is based on a reverse approach, i.e., firstly, a pore 

size distribution function is assumed and Q-P is drawn by Equation (6).  
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where 𝑛𝑇(−) is the total number of pores. CDF is a cumulative distribution 

function, 𝜎, R, T, τ, and δ are, respectively, surface tension, gas constant, 

temperature, tortuosity, and membrane thickness. Also, r, p, pe, ηg, h, and M are 

pore radius, pressure at pore inlet (gauge), pressure at pore outlet (absolute), 

gas viscosity, pressure increment, and molecular weight, respectively. The 

details of the derivation of equation (6) are given in [3]. 

The distribution parameters, e.g., the mean pore size, 𝜇, and the standard 

deviation, 𝜎 (Note 𝜎 is used for surface tension and standard deviation.), of the 

Gaussian normal distribution, which make the calculated Q-P curve best fit to 

the experimental Q-P curve, are searched for. The method enables us to find 

pore size distribution using fewer sets of experimental Q vs. P points. However, 

the method has been applied until now only for the single Gaussian distribution 

[3]. 

The pore sizes often consist of two distributions, one for the smaller pores 

and the other for the larger pores. Even though the larger pores are usually 

considered the defect pores and the number is much less than the smaller ones, 

their presence significantly affects the membrane’s separation performance. 

Therefore, presenting the pore size distribution as the binodal distribution is 

desirable to know the membrane’s separation behavior more accurately. 

The objective of this work is to find a method to split the experimental Q-

P curve into two components (Q-P)s, one that is for the smaller pores and the 

other that is for the larger pores, which is then followed by the finding of 𝜇 and 

𝜎 for each component pore size distribution. 

 

 

2. Methodology  

 

As mentioned above, the wet flow rate, Qv, wet, versus Δp curve (See Fig. 

1) is called the Q-P curve. It should be noted that three different kinds of the 

Q-P curve are used in this work; i.e., 1) (Q-P)exp that is Q-P generated by the 

experiments, 2) (Q-P)distr that is calculated by using the Gaussian distribution 

parameters, μ, σ, etc. and 3) (Q-P)MLSF that is calculated by using the parameters 

involved in the modified logistic sigmoid function (MLSF), a, b, c, etc. 

It was also mentioned that, according to the method proposed in [3], the 

two parameters of the single Gaussian pore size distribution, i.e., μ and σ are 

obtained by searching for the best fit (Q-P)distr to (Q-P)exp.  

For the binodal distribution, one of the approaches (Approach 1) is 

obviously the extension of the above approach, i.e., fitting the (Q-P)distr 

calculated based on the binodal pore size distribution to the (Q-P)exp. It can be 

done by minimizing ∑(𝑄𝑏𝑖𝑛𝑜𝑑𝑎𝑙 − 𝑄𝑒𝑥𝑝)
2
 , where 𝑄𝑏𝑖𝑛𝑜𝑑𝑎𝑙 is the flow rate 

calculated based on binodal distribution and 𝑄𝑒𝑥𝑝 is the experimental flow rate, 

for as many ∆𝑃 as possible. However, it was found that the convergence took a 

long time because there are 5 unknown parameters, i.e., 𝜇 and 𝜎 for both small 

(1st) and large pore size (2nd) distribution and 𝛾 (ratio of the contribution of the 

2nd pore size distribution to the overall pore size distribution). Moreover, the 

calculation of the (Q-P)distr for a given binodal distribution is a lengthy 

procedure. Often, the optimization process stops before the convergence is 

reached.  

Another approach (Approach 2) is, as suggested in the introduction, to split 

the (Q-P)exp into two components, (Q-P)exp,1 that is contributed from the 

smaller pores and (Q-P)exp,2 from the larger pores, followed by the finding of 

𝜇 and 𝜎 for each pore size distribution. 

The present work adopts Approach 2, which comprises the following steps.  

Step 1. Confirm that the pore size distribution is the binodal distribution. 

If (Q-P)exp shows an inflection point or double peaks appear in the derivative 

of (Q-P)exp, it is the sign of the binodal distribution. 

Step 2. The (Q-P)exp is split into two models (Q-P)MLSF,1 and (Q-P)MLSF,2.  

For this purpose, it is assumed that the (Q-P)exp of a single distribution 

can be well fitted by (Q-P)MLSF represented by the following modified logistic 

sigmoid function (MLSF). 
 

1 exp( ( ))
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y
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=
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(7) 

 

where y and x represent Qv,wet (m
3/Nt s) and ∆𝑝 (Pa), respectively, and a, b, and 

c are the fitting parameters. 

Then, (Q-P)MLSF of the bimodal distribution can be given by 
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where 𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑏2 and 𝑐2 are the fitting parameters for the 1st and the 2nd 

distribution and d denotes the ratio of the contribution of the 2nd distribution to 

that of the 1st contribution. 

The first term of equation (8) corresponds to (Q-P)MLSF,1, and the second 

term (Q-P)MLSF,2. 

Note that the model has 6 fitting parameters, i.e., 𝑎1, 𝑏1, 𝑐1, 𝑑𝑎2, 𝑏2 and 𝑐2. 

However, 𝑦 = (𝑎1 + 𝑑𝑎2)𝑥 when x approaches infinity. Therefore, the slope 

of Qv,wet versus ∆𝑝 , which can be experimentally determined, becomes equal 

to 𝑎1 + 𝑑𝑎2 at large ∆𝑝. 
Thus, one of the fitting parameters is removed and 5 are left to be 

optimized. Even though the same number of adjustable parameters are involved 

in the optimization, it can go much faster than finding the optimum 𝜇1, 𝜎1, 𝜇2 , 

𝜎2 and 𝛾 by Approach 1, since y can be calculated almost instantly for a given 

set of 5 unknowns chosen from 𝑎1, 𝑏1, 𝑐1, 𝑑𝑎2, 𝑏2 and 𝑐2. 

Step 3. Generate (Q-P)MLSF,1 using a1, b1 and c1 in equation (7) and then 

search for 𝜇1 and 𝜎1 that will make (Q-P)distr,1 best fit to the (Q-P)MLSF,1, 

according to the method established in [3]. Similarly, 𝜇2 and 𝜎2 are found from 

da2, b2 and c2. 

Step 4. Draw the binodal pore size distribution curve.  

For this purpose, 𝛾 is needed and it is obtained in the following way. 

The slope of the linear portion of the (Q-P)distr should be equal to that of 

the (Q-P)MLSF when both are based on binodal distribution, but the scale of   the

y-axis of the (Q-P)distr is different from that of the (Q-P)MLSF. Therefore,  

 

1 2 1 2((1 ) ) ( )a da   − + = +  (9) 

 

where 𝛼1 and 𝛼2 are the slope of the (Q-P)distr,1 and the (Q-P)distr,2, 

respectively, and 𝛽 is the scale ratio. (Note that 𝛾 is defined as the contribution 

of the 2nd distribution to the overall distribution, while d is defined as the ratio 

of the contribution of the 2nd distribution to that of the 1st distribution.) 

Setting the first and the second term of the left side of equation (9) equal 

to those of the right side of equation (9) 
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From (10) and (11) 
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Solving for 𝛾 
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The bimodal pore size distribution can be drawn, once 𝜇1, 𝜎1, 𝜇2 , 𝜎2 and 

𝛾 are known. 

 

 

3. Results and Discussion 

 
3.1. Justification of the method 

 

3.1.1. Verification of Q-P curve modeling by MLSF 

To test the fitting of (Q-P)MLSF to (Q-P)exp, (Q-P)distr of a single Gaussian 

distribution is generated and used as an imaginary (Q-P)exp. Thus, (Q-P)distr 

is generated with 𝜇 = 1 × 10−6 and 𝜎 = 0.5 × 10−6 m by the method 

described in detail in our earlier communication [3]. 

For this (Q-P)distr, the best-fit parameters of (Q-P)MLSF were found to be a 

= 1.90 × 10-17 (m3/Nt s Pa), b = 6.37 and c = 0.70 × 10-4 (1/Pa). 

Fig. 3 compares the best fit (Q-P)MILF with (Q-P)dist. Their agreement is 

excellent. 

 

3.1.2. Fitting of Q-P curve by MLSF (Binodal Gaussian pore size distribution) 

To test the fitting of (Q-P)MLSF (equation 8) to (Q-P)distr of the binodal 

Gaussian distribution, (Q-P)distr was generated with 𝜇1 = 1 × 10−6 and 𝜎1 =
0.5 × 10−6 m, and 𝜇2 = 3 × 10−6 and 𝜎2 = 0.5 × 10−6 m. The ratio of the 

contribution of the 2nd distribution to the overall distribution was 5 %. Then, 

the best-fit parameters for (Q-P)MLSF were found to be 𝑎1 = 2.26 × 10−17, 𝑏1 =
6.180, 𝑐1 = 7.63 × 10−5, 𝑑𝑎2 = 2.995 × 10−17, 𝑏2 = 12.88 and 𝑐2 =
2.95 × 10−4. 
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Fig. 3. Q-P curve (Series 1, (Q-P)distr generated with 𝜇 = 1 × 10−6 and 𝜎 =
0.5 × 10−6 m; Series 2, the best fit (Q-P)MLSF with a = 1.90 × 10-13, b = 6.37 and c = 0.70) 

Note: y represents Qv,wet (m3/Nt s), x is ∆𝑝 (Pa) × 10-4. a and c were multiplied by 104 

because x was multiplied by 10-4. 

 

 

Fig. 4 compares the best fit (Q-P)MILF with (Q-P)dist. The agreement is 

excellent. 

Thus, it was proven that (Q-P)dist can fit (Q-P)MLSF very well. 

 

3.1.3. Back-calculation of (𝜇1 𝑎𝑛𝑑 𝜎1) and (𝜇2 𝑎𝑛𝑑 𝜎2) for the 1st and 2nd pore 

size distribution, respectively. 

Then, (𝜇1 and 𝜎1) and (𝜇2 and 𝜎2) for the 1st and 2nd pore size distribution, 

respectively, were searched for following Step 3 of the methodology section.  

The results were 𝜇1 = 1.3 × 10-6, 𝜎1= 0.5 × 10-6, 𝜇2 = 3.1 × 10-6 and 𝜎2 = 

0.4 × 10-6 m. The obtained mean radii and standard deviations deviated from 

the original ones, probably because MLSF could not fit the original Q-P curve 

perfectly.  

 

3.1.4. Comparison of bimodal distribution by the proposed method with the 

original pore size distribution 

Finally, the pore size distribution curve was drawn following Step 4 of the 

methodology section. 

By drawing (Q-P)distr,1 using 𝜇1 = 1.3 × 10-6 and 𝜎1 = 0.5 × 10-6, 𝛼1 is 

found to be 3.88 × 10-17. Similarly, by drawing (Q-P)distr,2, using 𝜇2 = 3.1 × 

10-6 and 𝜎2 = 0.4 × 10-6, 𝛼2 is found to be 6.04 × 10-16. Then, using 𝑎1 =
2.26 × 10−17 and 𝑑𝑎2 = 2.995 × 10−17 in equation (13), 𝛾 = 0.0785. 

The binodal pore size distribution so obtained from the fitted MLSF model 

is shown in Fig. 5a and compared with the original binodal distribution (Fig. 

5b). 

The fitted MLSF model shows a slightly higher peak for the second 

distribution. 

 
Fig. 4. Q-P curve for binodal distribution (Series 1, (Q-P)distr generated with 𝜇1 =
1 × 10−6 and 𝜎1 = 0.5 × 10−6 m, and 𝜇2 = 3 × 10−6 and 𝜎2 = 0.5 × 10−6 m. The ratio 

of the contribution of the 2nd distribution to the overall distribution was 5 %.; Series 2, the 

best fit (Q-P)MLSF with 𝑎1 = 2.26 × 10−13, 𝑏1 = 6.180, 𝑐1 = 7.63 × 10−1, 𝑑𝑎2 =
2.995 × 10−13, 𝑏2 = 12.88 and 𝑐2 = 2.95) Note: y represents Qv,wet (m3/Nt s), x is 

∆𝑝 (Pa) × 10-4. a and c were multiplied by 104 because x was multiplied by 10-4. 

 

 

3.2. Analysis of the experimental data in the literature 

 

The papers in which the experimental Q-P curve ((Q-P)exp) for the binodal 

distribution is reported together with the pore size distribution are scarce in the 

literature. One of those is the paper by Peinador et al. [18] who reported the (Q-

P)exp for cotton fiber face mask (FM) and cellulose nitrate membrane (CN), 

and determined the binodal pore size distribution by Gas Liquid Displacement 

Porometry (GLDP). They used water (surface tension 72.0 mN/m) and 

commercial liquid Fluorinert FC-43 (surface tension 16.0 mN/m) as the liquid 

phase, for FM and CN, respectively. 

 Applying Step 2 of the method section to their (Q-P)exp data, the best fit 

MLSF parameters were obtained for both FM and CN, and the results are 

shown in the 2nd and 3rd columns of Table 1. 

Fig. 6 shows the curves for (Q-P)exp reported by Peinador et al. and (Q-

P)MLSF calculated with the above MLSFs parameters. 

 

 

 

 

 

 

 
 

 
 

 
 

Fig. 5. a) Binodal pore size distribution obtained from the fitted MLSF model, b) Original binodal distribution. 

 

Table 1 

MLSF and pore size distribution parameters for the cotton fiber face mask (FM) and cellulose nitrate membrane (CN). 

 

 MLSF parameters Pore size distribution parameters 

 a1, b1, c1 da2, b2, c2 𝜇1, 𝜎1  𝜇2, 𝜎2  𝛾a 

Face mask (FM) 

a1 = 14459 

b1 = 41.65 

c1 = 235 × 10-5 

da2 = 66191 

b2 = 12.0 

c2 = 78.3 × 10-5 

𝜇1= 8.37 μm 

𝜎1= 0.37 μm 

𝜇2= 8.5 μm 

𝜎2 = 1.5 μm 
0.757 

Cellulose nitrate 

membrane (CN) 

a1 = 490 

b1 = 316.2 

c1 = 1209 × 10-5 

da2 = 59025 

b2 = 13.08 

c2 = 64.99× 10-5 

 

𝜇1= 1.23 μm 

𝜎1= 0.018 μm 

𝜇2= 1.5 μm 

𝜎2 = 0.2 μm 
0.99177 

𝛾a is the contribution of the second pore size distribution. 
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Note that (Q-P)MLSF can represent (Q-P)exp very well for both FM and CN, 

indicating that the MLSF parameters were well chosen. In particular, the 

agreement of (Q-P)MLSF with (Q-P)exp is so good for CN that the (Q-P)MLSF line 

covers completely that for (Q-P)exp (Fig. 6b). It is also noted that the first 

inflection point appears at about 0.17 × 105 Pa and the second one at about 0.25 

× 105 Pa in the Q-P curve of FM. On the other hand, one inflection point 

appears at about 0.21 × 105 Pa but no obvious second inflection point is seen 

in the Q-P curve of CN.  

Then, following Step 3 of the method section,(𝜇1 and 𝜎1) and (𝜇2 and 𝜎2) 

were obtained for both FM and CN. Those values are listed in the 4th and 5th 

columns of Table 1.  

Finally, following Step 4 of the method section, the pore size distribution 

was generated for both FM and CN, and the results are shown in Figs. 7a and 

b, respectively. 

Fig. 7a shows a peak at about 8 × 10-6 m with a broad tailing thereafter, 

reflecting the large contribution (𝛾 = 0.757) of the second peak. Fig. 7b shows 

an almost symmetrical peak with a mean pore radius of 1.5 × 10-6 m. This is 

the second peak whose contribution is so large (𝛾 = 0.9917) that the first peak 

shows practically no contribution.  

The pore size distributions reported by Peinador et al. are shown in Figs. 

8a and b. Note that the y-axis of Figs. 8a and b is permeability, while the y-axis 

of Figs. 7a and b is 1/m. (Most likely, the distribution in Fig. 8 is based on the 

pore area while the distribution in Fig. 7 is based on the pore number.) 

Therefore, Figs. 7 and 8 do not correspond to each other directly. Nevertheless, 

we are allowed to compare the shapes of the distribution curves given in Figs. 

7 and 8.  

Comparing Fig. 7a and Fig. 8a, both figures have a sharp peak at around 8 

× 10-6 m, which is the first peak. Both have the tailing contributed by the second 

peak. But the second peak is more pronounced in Fig. 7a due to its high 𝛾 value. 

In other words, the first peak contributes less to the entire pore size distribution 

in Fig. 7a than in Fig. 8a. 

Comparing Figs.7b and 8b, both figures have a peak at 1.5 × 10-6 m, which 

in this case is the second peak. Fig. 7b is symmetrical around the mean radius 

due to its very large 𝛾 value (𝛾 = 0.9917). As for Fig. 8b, a small peak appears 

at around 1.2 × 10-6 m, which seems to be the contribution of the first peak. In 

fact, no inflection point appears in Fig. 6b in the high range of Δp. Therefore, 

the appearance of the peak in the small range of the pore radius seems 

unreasonable. 

In any case, for both FM and CN, the newly proposed method leads to less 

contribution of the 1st smaller pore sizes than what the GLDP machine shows. 

 

 

 
Fig. 6. Comparison of (Q-P)MLSF with (Q-P)exp a) for FM, b) for CN (Blue, (Q-P)exp by Peinador et al. [18]; Red, (Q-P)MLSF). 

 

 

 
Fig. 7. Pore size distribution obtained by the proposed method from the experimental data of Peinador et al. [18] a) for FM, b) for CN. 

 

 

 
Fig. 8. Pore size distribution determined by GLDP a) FM, b) CN (redrawn from Fig. 7 of Peinadar et al. [18]).
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4. Conclusions 

 

From this work, the following conclusions can be drawn. 

1. MLSF can be used for modeling the experimental Q-P curve of the 

bubble point gas transport method. 

2. The overall Q-P curve can be split into its component curves, one 

contributed from the small pore size distribution and the other large 

pore size distribution by the aid of MLSF as the model equation. 

3. The mean pore size and the standard deviation of each pore size 

distribution can be obtained from each component Q-P curve 

generated with the aid of MLSF. 

4. The method is applicable to obtain binodal distribution parameters for 

the experimental Q-P curve taken from the literature. 

The following future work is suggested. 

1. Apply the polynomial function to improve the modeling of the Q-P 

curve. 

2. Apply another method such as the Bézier curve method to improve the 

modeling of the Q-P curve. 
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