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Membrane filtration, especially based on the size exclusion phenomenon, has long been established due to its abilities to addressing the growing demands of the clean water of the 
world’s population. However, widespread applications of the membranes face several challenges including chemical vulnerability, thermal deterioration, and biological degradation 
of the membranes that transpire while recovering the membrane flux after fouling. Therefore, developing antifouling membranes for water treatment purposes immensely increased 
in the past few years and inorganic nanoparticles played a significant role in this era. By considering the great potential of nanoparticles in the field of developing robust and small 
foot-print membranes, this study reviews the application of nanoparticles in pressure driven flat-sheet membranes and their impact on membrane characteristics and performance. 
It has been demonstrated that the application of nanoparticles has greatly improved the water permeability and antifouling potential of the membrane without compromising the 
selectivity of the membranes.
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1. Introduction 

 

A continuously increasing demand of fresh water is one of the 
threatening issues to the world. The world’s water resources are distributed 

into conventional water resources (ground water, rivers, and lakes) providing 

clean water for direct utilization including drinking or industrial purposes and 
unconventional water resources (polluted water, wastewater, brackish water 

and sea water) that need treatment prior to use. The huge utilization of 

conventional water resources in everyday life by individuals (drinking, 
cleaning, flushing), agriculturalists and industrialists has promptly depleting 

the conventional water resources. According to an estimate, a large amount of 

water is utilized by industrial and agricultural activities: 70% of the surface 
water and ground water, rest is served for domestic use [1]. The main 

challenges that are afflicting the world into sever water crisis include but not 

limited to population growth, food security demand, and mining activities [2-
5]. Due to extensive use of freshwater for agricultural and industrial activities 

nearly 750 million people lack access to the safe drinking water [6]. Many are 

forced to rely on contaminated water for potable use, which tends them prone 

to waterborne diseases like Typhoid, hepatitis A and hepatitis E, polio and 

cholera, birth defects, bladder cancer, and spontaneous abortion. Moreover, ~ 

80% of the used water is directly discharged into the conventional water 
resources (lakes and rivers) that reduces the availability of fresh water for 

direct use [6]. In developing countries around half of the population is 

exposed to polluted water sources, which along with inadequate water 
supplies for personal hygiene and poor sanitation contribute to an estimated 4 

billion cases of diarrheal disease each year. Consequently, ca 2.2 million 

deaths occur annually with high proportion of children under five years. 
These problems motivated the researchers to develop new water treatment 

technologies, or to improve conventional water treatment systems resulting in 

adequate supply of clean and safe water by utilizing unconventional water 
resources. The low production rate of conventional water treatment 

technologies fails to meet the world’s demand of clean water, therefore, to 

address the global scarcity of clean water, substitution of conventional water 
treatment technology is required with key features of sustainability, 

robustness, and low usage of chemicals during water treatment. 

Water filtration has long been used in the history to meet the safe water 

demand of the world, whereas, the old techniques are insufficient to meet the 

current demand of water, both in terms of quality and quantity, of the world. 
The membrane-based industry is a rapidly growing domain in recent advances 

of water treatment due to its substantiality and robustness [7]. The low 

operational cost, high quality water and adequate output, compliance with 
stringent environmental parameters, and small foot-print deemed the 

membrane technology as the most suitable pathway for water treatment than 

other conventional counterparts such as chemical oxidation, disinfection, 
adsorption, distillation, or conventional media filtration. The membrane-based 

processes are easy to scale up due to minimized spatial requirements and 

potentially applicable in widespread domains including, water treatment, 
wastewater treatment, and industrial wastewater treatment (pharmaceutical, 

dyes, and metal recovery), because it provides good quality effluent, instant 

removal of pollutants, and high output in terms of treated water [8]. 
Therefore, membrane-based water purification technology has been targeted 

as a dominant future technology. 

The membranes filtration process is mainly dependent on the applied 
pressure across the membrane. Based on the applied pressure, the membranes 

can be categorized as: (i) the pressure driven membrane processes (e.g. 

microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis 
(RO), pervaporation (PVP), and forward osmosis (FO)), and (ii) the non-

pressure driven membrane processes (e.g. dialysis, electrodialysis, and 

membrane distillation) [9]. Now days, pressure driven membranes are of great 
importance owing to spontaneous production of large amount of clean water. 

Based on the size exclusion principal (characteristics pore size), chemistry of 
active layer, and potential applications, pressure driven membranes are 

available as MF (for suspended solids, protozoa and bacteria removal), UF 

(for virus, dissolved organic matter, and colloid removal), NF (for hardness, 
heavy metals and dissolved organic matter removal) and RO (for desalination, 

water reuse and ultrapure water production).  
Although, some degree of successful commercialization has been 

achieved for membrane filtration but fouling of the membrane limits its 

widespread commercialization [7]. The fouling of the membrane is the most 

considerable issue that occurs on the surface of the membrane or inside pores 
[10]. Depending upon the foulant type, the fouling could be organic fouling 

(foulants: organic pollutants), biofouling (foulants: protozoa, bacteria, and 

viruses), scaling (foulants: salt minerals). Due to fouling of the membrane the 
permeate flux of the membrane reduces that increase the operational cost in 

various terms including cleaning of the membrane (mostly, at commercial 

scale, cleaning is attained using chemical oxidation), more energy 

requirements in lieu of to increased transmembrane pressure due to clogging 

of the pores, replacement of the membranes, and the most important, skilled 

labor to perform all these tasks. Moreover, if the membrane cleaning or 
replacement is not timely performed, it reduces the water quality, which itself 

is a concerning issue. Therefore, excellent fouling resistant membranes need 

to be developed to mitigate fouling of the membrane. 
The main reason of the fouling is the intrinsic properties of the membrane 

materials, i.e., the membranes fabricated by hydrophobic polymers are 

hydrophobic in nature and are more prone to the fouling, especially organic 
fouling [7, 11, 12]. Most of the industrial effluents contain high amount of 

organic foulants and rapidly fouls the hydrophobic membranes by deposition 

on the surface, or adsorption into the pores and pore walls. The 
hydrophobicity of the polymer depends on the surface energy: the polymers 

with lower than water surface energy produces hydrophobic membranes [13]. 

Therefore, the modification of the intrinsic membrane properties is of 
paramount preference. The fouling could be either irreversible or reversible, 

irreversible fouling is fouling that could not be cleaned from the membrane 

by any means and it reduces the life of the membrane. Hence, hydrophilic 

membrane allows less foulant to be adsorbed on the membrane and attract 

more water molecules that reduces the irreversible membrane fouling and 
increase the membrane life span by reducing cleaning frequency [14]. 

 

 
2. Membrane modifications for fouling mitigation 

 

For several years, a huge devotion is employed for altering the membrane 
properties to reduce membrane fouling [9, 14-16]. Different researchers use 

different methods to alter membrane properties, which can produce fouling 

resistant membranes with longer life spans. Based on the particular 
requirement, various modifications are performed by adding new additives, 

including hydrophilic polymers (polydopamine, poly(ethylene glycol), etc.) 

[17, 18], amphiphilic copolymers (PVD-g-P(PEGMA), poly(vinylidene 
fluoride)-graft-poly(N,N-dimethylamino-2-ethylmethacrylate) (PVDF-g-

PDMAEMA), etc.) [19, 20], inorganic nanoparticles (SiO2, ZnO, TiO2, 

graphene oxide, etc.) [16, 17, 21-23] or some other charged molecules. The 
modification techniques can be broadly categorized into pre-modification and 

post-modification. In pre-modification, membrane properties are altered 

before fabrication of the membrane i.e. alteration of polymer backbone to use 
for membrane fabrication or modifiers are applied to membrane solution 

before membrane fabrication. In post-modification, membrane properties are 

altered after the fabrication of the membrane. A detailed summary is given in 
Table 1 about the types of modifications, polymer, and modifier used in 
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different researches. 

 

 

3. Nanomaterials as membrane modifiers 

 
The technical innovation introduces new methods for incorporation of 

NPs into the membrane to fabricate membranes with desirable properties. The 

location of NPs in membrane categorizes the prepared membrane as well as 
the preparation procedure. The incorporation of NPs not only improves the 

intrinsic properties of the membrane (e.g. hydrophilicity, surface charge, and 

surface roughness), but also introduces some additional properties to the 
membrane. Such properties include mechanical strength, thermal stability, 

change in pore size and porosity, and specific properties of respective NPs i.e. 

photocatalysis, antibacterial property, adsorption etc. The prepared membrane 
could be a nanocomposite or hybrid membrane in which NPs are dispersed 

throughout the membrane matrix; thin-film nanocomposite membrane in 

which NPs are incorporated at the surface of the membrane but dispersed in a 
thin-film of polymer; surface located nanocomposite membrane in which NPs 

are located at the surface. Each type of membrane modification, method to 

prepare such membranes, and advantages of these modification will be 
discussed in details in the following sections. 

 

3.1. Nanocomposite or hybrid membranes 
 

It is the simplest method used to incorporate NPs into the membrane to 

improve membrane fouling characteristics: NPs are dispersed throughout the 
membrane matrix and improve antifouling properties of the membranes. In 

order to prepare such membranes, NPs are blended in polymer solution, and 

polymer-NPs blend is used to prepare the membrane. Thus, the process is 
largely known as physical blending process. The membrane preparation could 

be through phase inversion process (PIP) or by electrospinning process. In 

both cases, the NPs are incorporated into the membrane matrix. A schematic 
of physical blending followed by phase inversion method is given in Figure 1. 

Oh et al. [24] prepared flat-sheet PVDF UF membranes by dispersing 

TiO2 NPs into casting solution. The membranes were prepared on a non-

woven solid support by adding 2% P25 TiO2 NPs into casting solution. A 

shift of membrane surface property was found from hydrophobic to 

hydrophilic: the contact angle was decreased from 80o to 69o. They further 
found that the addition of NPs decreased the average pore size (~0.24 to 0.12 

µm) and surface roughness. The membrane fouling index was determined 

using casein solution that showed reduced fouling of modified membrane, 
which was attributed to the increase in hydrophilicity, decrease in pore size 

and surface roughness of the membrane.  

Yan et al. [25] prepared Alumina (Al2O3) PVDF nanocomposite UF 

membrane by PIP. The prepared membranes were used for the rejection of oil 

from an oil field. More than 90% and 98% retention of chemical oxygen 

demand and total organic carbon (TOC) and less than 1 g L-1 oil content was 

found in the permeate. Moreover, 100% of flux recovery ratio (FRR) of 
Al2O3-PVDF nanocomposite membranes was reported after cleaning with 1 

wt.% OP-10 surfactant treatment at pH 10.  
Cui et al. [26] prepared PVDF/SiO2/dibutyl phthalate UF membrane 

using thermally induced phase separation (TIPS) and found that the presence 

of SiO2 largely affected the membrane internal morphology. In more details, 

they reported that the porosity continuously decreased by increasing the 
concentration of SiO2. The membrane flux increased by increasing the SiO2 

concentration and reached at maximum point i.e. 120 L.m-2.h-1 at 0.1 MPa 

corresponding to 5 wt.% SiO2, but a further increase in SiO2 reduced the flux. 
Tensile strength also showed the similar trend as of flux, but the optimized 

concentration of SiO2 was reported as 3 wt.% for tensile strength. 

Shuai et al. [23] prepared PVDF nanocomposite membrane with a wide 
concentration range of Nano-ZnO (6.7% to 26.7 wt.%) as membrane modifier 

to fabricate anti-irreversible fouling membranes. They found almost 100% 

FRR for all the modified membranes whereas pristine PVDF membrane 
achieved only 78% FRR. Finally, the optimized dosage of nano-ZnO was 

determined as 6.7%, which increased the flux of the membrane almost double 

than that of pristine PVDF. 
Another very interesting study was reported by Nang et al. [27]: PVDF-

TiO2 mixed matrix membrane was prepared and the modified membrane 

dramatically improved PWP i.e., 392.81±10.93 l m-2 h-1 bar-1 compared to that 
of the neat membrane (76.99±4.87 L.m-2.h-1.bar-1). The rejection coefficient 

was reported as 99% for methylene blue (MB) dye with modified membranes. 

Moreover, they induced the self-cleaning potential of the membrane under 
UV light, which showed 100% FRR. 

The nanocomposite membranes showed an improvement in the basic 

characteristics of the membranes (hydrophilicity, pore size, porosity), which 
are considered crucial for the filtration purposes. The detailed properties of 

the nanocomposite membranes are discussed hereafter. 

 

3.1.1. Impact of physical blending on nanocomposite membranes 

 

There are several advantages of nanocomposite membranes, some are 
specific to the applied NPs (antibacterial activity, oxidative behavior etc.) and 

some are irrespective of the NPs (hydrophilicity, surface roughness, tensile 

strength etc.). Some of the important modifications encountered after 
incorporation of NPs are mentioned below: 

 
 

 
Table 1 

Types of modification to the membranes and changes in membrane properties acquired after modification. 

 

Polymer Modifier Modification technique Application/ foulant Membrane properties and performance evaluation 

PVDF TiO2 Pre-modification 

(blending) 

UF/ HA hydrophilicity↑, PWP↑, fouling↓, S value↓, fouling resistance↑, rejection 

coefficient↑, irreversible fouling↓ [28] 

PSf GO- TiO2 Pre-modification 

(blending) 

UF/ HA hydrophilicity↑, PWP↑, fouling↓, surface charge: more negative, fouling 

resistance↑, rejection coefficient↑, surface roughness↓ [29] 

PVDF CA Pre-modification 

(blending) 

UF/BSA and sewage 

waste water 

hydrophilicity↑, PWP↑, porosity↑, fouling↓, fouling resistance↑, flux 

recovery ratio↓, tensile strength↓, pore size↑, rejection coefficient↑ [30] 

PSf Isocyanated-GO Pre-modificatoin 

(blending) 

UF/BSA hydrophilicity↑, PWP↓, fouling↓, surface charge: more negative, surface 

roughness↓, pore size↓, fouling resistance↑, flux recovery↑ [31] 

PVDF PVC-g-P(PEGMA)* Pre-modification 

(blending) 

UF/BSA solution hydrophilicity↑, PWP↑, pore size↑, porosity↑, fouling resistance↓ but higher 

absolute flux was recorded, rejection coefficient↑ [19] 

PVDF PVP-carboxylated TiO2 Post-modification (TFN) NF/ BSA hydrophilicity↑, PWP↑, fouling↓, rejection coefficient↑, flux recovery↑, 

surface roughness↓ [32] 

PVDF ZnO Post-modification 

(Atomic layer 

deposition) 

MF/SA hydrophilicity↑, PWP↑, fouling↓, pore size↓, surface charge: more negative, 

total surface energy↑, fouling resistance↑, rejection coefficient↑ [33] 

PVDF Acrylic and amino 

monomer 

Post-modification (dip 

coating) 

UF/non-skim milk hydrophilicity↑, PWP↓, fouling↓, fouling resistance↑, rejection coefficient↑, 

flux recovery↑ [34] 

SMA/PVDF TiO2 Post-modification (self-

assembly) 

UF/BSA hydrophilicity↑, PWP↑, fouling↓, rejection coefficient↓, flux recovery↑, 

MWCO↓ [35] 

PCTE** Al2O3 Post-modificatoin 

(atomic layer deposition) 

UF/BSA hydrophilicity↑, PWP↓, fouling↓, pore size↓, rejection coefficient↑ [36] 

 

*PVC-g-P(PEGMA): Poly(vinyl chloride)-grafted-poly(ethylene glycol) methylether methacrylate 

**PCTE: track-etched polycarbonate membranes 

HA: humic acid 

BSA: bovine serum albumin 

PWP: pure water permeance 

S value: structural parameter value
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3.1.2. Effect on membrane porous structure 

 

Incorporation of NPs into polymer membrane alters the morphology of 

the membrane. Most of the studies found that porosity and pore size are 

largely affected by the incorporation of NPs into the membrane [37, 38]. 
Besides pore size and porosity, the type of interconnected porous network of 

the membrane is also influenced by NPs [28]. 

Zhang et al. [39] found that addition of TiO2 NPs into PVDF membrane 
tailored the membrane porous structure and a shift was observed from 

fingerlike voids to spongy voids with an increase in NPs concentration. 

However, they found that a transformation of inherent porous network is 
dependent on optimized concentration of NPs. 

Dong et al. [40] found that addition of Al2O3 NPs or Linda type L (LTL) 

zeolite NPs changed the pore size of the PSf membrane. Alpatova et al. [41] 
reported an insignificant change in the pore size of the PVDF membranes by 

incorporation of Fe2O3 NPs, but porosity of membrane was highly affected 

and linearly related to the concentration of Fe2O3 NPs. The addition of ZnO 
NPs also tailored the porosity and pore size of the membrane [23], but 

optimized concentration of NPs to be applied serves an important factor. The 

role of ZnO NPs for changing the porosity and pore size is shown in Figures 
2a,b. Likewise, MgOH NPs also increased the porosity of the membrane that 

is directly correlated to the concentration of MgCl2 in casting solution (Figure 

2c), which reacted with NaOH in coagulation bath and produced MgOH NPs 
in membrane. In another study, CuO NPs were also found responsible for 

increase in membrane pore size, but after certain concentration of CuO, the 

pore size started to decrease. Similar trend was observed with porosity change 
caused by the addition of CuO NPs (Figure 2d). It was described that the 

hydrophilicity of NPs increased the water penetration during solvent-

nonsolvent exchange period and more water rapidly entered the membrane, 
which increased the pore size and porosity. Conversely, by increasing the 

concentration of NPs from specific range, the dope solution became more 

viscous and reduced the penetration of water into membrane during phase 

transformation. As a result, smaller pore size and less porosity was recorded 

with high concentration of NPs [42].  
 
 

 

 
 

Fig. 1. Physical blending of NPs into membrane casting solution followed by 

PIP for membrane fabrication. 

 

 

 
Fig. 2. Effect of NPs on the pore size and porosity of the membrane, (a) SEM images of the surface of membranes with different concentration of ZnO [23]; (b) average 

pore size of the membranes of ZnO containing membranes [23]; (c) effect of MgOH NPs concentration on the porosity of the membranes [43]; (d) effect of different 

concentrations of CuO NPs on the pore size and porosity of the membrane [42]. 
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3.1.3. Effect on hydrophilicity 

 

Hydrophilicity is another major attribution of membrane affected by 

incorporation of NPs. The membrane imbedded NPs attract more water 

molecules because of their high surface energy by producing hydrogen bonds 
with water molecules resulting in the formation of tight hydration layer on the 

membrane. The hydrophilicity of the membrane is assessed using the contact 

angel measurement of the membrane, where a smaller contact angle 
represents more hydrophilicity. As a water drop gets into contact with the 

hydrophilic surface with high energy NPs, the water drop readily dispersed by 

attraction of the adjacent high energy particles on the surface and produce a 
smaller CA. Alternatively, the hydrophobic surface does not attract the water 

molecule and large CA is formed on the surface of the membrane [44]. Zhang 

et al. [45] prepared PVDF membranes with addition of SiO2 NPs and 
phosphorylated silica nanotubes (PSNTs) and found that contact angle of the 

membrane decreased in the following order: 

 
PVDF > PVDF/SiO2 NPs > PVDF/PSNTs, 

 

which can also be observed in Figure 3a. The maximum hydrophilicity was 
recorded for the membranes prepared with PSNTs. Song et al. [46] found an 

increase in hydrophilicity of PVDF-LiCl membrane after addition of TiO2 

NPs and contact angle declined from 80o to 75 o. In another study, PES based 
hybrid membranes were prepared by blending SiO2-Ag NPs in casting 

solution and CA was found to be decreased corresponding to NPs 

concentration [47], i.e. CA decreased from 67.7 o to 52.6 o for PES membrane 
and 4% SiO2-Ag PES membrane, respectively. Zhang et al. [22] studied the 

antifouling behavior of modified PVDF membrane with addition of different 

ratio of GO/oxidized multi-walled carbon nanotubes (OMWCNTs) and 
recorded a least CA and highest hydrophilicity by adding 1:9 proportion of 

GO/OMWCNTs, which can be observed in the Figure 3d. The reason of low 

CA was described as owing the hydration effect between carboxyl group of 
low dimensional carbon material and water. 

A serious consideration during physical blending is the masking effect of 

NPs by polymer. It is largely accepted that most of the NPs remain unexposed 

due to masking by polymer during preparation of nanocomposite membranes. 

Therefore, NPs fail to express their actual impact. This become clear by a 

study where membranes were prepared by adding different concentrations of 

TiO2 NPs, and the CA did not show remarkable changes [48]. It was found 

that 2% TiO2 NPs in PES membrane decreased the CA from 72o to 60o but a 

further increase in TiO2 NPs concentration: 4% and 6%, failed to significantly 
reduce CA from that of 2% TiO2 NPs (Figure 3c).  

 

3.1.4. Effect on surface charge 
 

Surface charge density of the membranes could also be affected by the 

incorporation of NPs. Sometimes, NPs are functionalized with charged groups 
to induce charge on the membrane, which helps in reducing the fouling 

propensity of the membrane. Zhao et al. [31] prepared the PSF membranes 

with different concentration of isocyanate-treated GO (iGO) NPs. First, they 
analyzed the zeta potential of GO and iGO at different pH and found that zeta 

potential of both, GO and iGO, decreased continuously as pH increased from 

2 to 11, but increased after pH 11. After incorporation of iGO into PSF 
membrane, the surface charge of the membrane was dramatically decreased 

and showed a linear relationship with iGO content in the membrane 

demonstrating more exposure of iGO to the surface by increasing the 
concentration of iGO in the dope solution. 

 

3.1.5. Effect on mechanical strength 
 

Mechanical strength influences the life-span of the membranes. A 

membrane with higher mechanical strength can resist the harsh conditions 
produced by the feed solution i.e. increase in transmembrane pressure. The 

mechanical strength of the membrane largely depends on the membrane 

morphology e.g. macroporous membrane has less mechanical strength and 
microporous membrane has higher mechanical strength. A good compatibility 

is usually found between NPs and polymer that increases the interaction 

(physical or chemical) among NPs and polymer molecules. As a result, 
membrane morphology is transformed from macroporous to microporous 

structure and membrane become mechanically strong [49]. Liang et al. [23] 

reported a linear relationship between the concentration of ZnO NPs present 

in membrane and mechanical strength of the membrane (Figure 4a).
 

 

 

 

 
 

Fig. 3. The impact of NPs on the hydrophilicity of the membranes, (a) change in contact angle of PVDF membrane by addition of SiO2 NPs, SNTs, and PSNTs [45]; (b) 

correlation between contact angle and water permeability by addition of TiO2 NPs to the PES membrane [44]; (c) effect of different concentrations of TiO2 NPs (modified and 

unmodified) on the contact angle of the membrane [48]; (d) a decrease in contact angle of PVDF membrane by adding GO/OMWCNTs to the membrane, and temporal 

behavior of contact angle by varied concentration of said modifiers [22]. 
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The increase in mechanical strength was attributed to the shrinking of 

fingerlike voids beneath skin layer of the PVDF membrane by addition of 

ZnO NPs. Wang et al. [50] prepared nano Al2O3/EPDM composite and 

reported an increase in tensile strength and elongation at brake with increase 

in nano Al2O3 concentration in membrane matrix. In another study, PVDF-
LiClO4-TiO2 membrane was prepared by adding TiO2 NPs into PVDF-LiClO4 

membrane [51]. It was found that the addition of LiClO4 decreased the 

membrane strength but the addition of TiO2 NPs increased the mechanical 
strength of the membrane, which was exclusively attributed to strongly 

interconnected voids as an effect of TiO2 NPs (Figures 4c,d). The thorough 

study on the stress and strain of the membranes with and without NPs 
strongly supports that addition of NPs in membrane adds mechanical strength 

to the membrane system, which could enhance the membrane resistance 

against harsh conditions i.e. high pressure, strong flow rate, mechanical 
cleaning. Sometimes inclusion of NPs reduces the mechanical strength, which 

is associated with high concentration of NPs (Figure 4b). High concentration 

of NPs favors the formation of macrovoids in membrane matrix resulting in 
decreased mechanical strength [39]. Therefore, it can be concluded that an 

appropriate concentration of NPs should be used that do not produce 

agglomerates in dope solution and macrovoids in membrane matrix, and 
results in strengthening of the membrane. 

 

3.1.6. Effect on surface roughness 
 

The relationship of surface roughness to membrane fouling has been 

described earlier but the impact of NPs incorporation into polymer membrane 
is contradictory. Some reports found that the surface roughness of the 

membrane decreased by incorporation of NPs while some stated that the 

surface roughness increased by introducing NPs into the membrane matrix. In 
both cases, either surface roughness decreases or increases after incorporation 

of NPs, the antifouling potential of the membrane was increased. 

Consequently, it remains challenging to relate the surface roughness with 
membrane fouling and impact of NPs on surface roughness. As observed by 

Zhang et al. [39] that incorporation of TiO2 NPs constantly increased surface 

roughness of the membrane. Irrespective of increase in surface roughness, all 

the membranes showed improved fouling resistance (Figures 5a,b). On 

contrary, Razmjou et al. [48] found that addition of TiO2 NPs decreased the 

surface roughness of the membrane, thus the membrane fouling is reduced. 

They recorded a minute difference between surface roughness of PES 

membrane and PES-TiO2 NPs nanocomposite membrane: from 50.76 nm to 
39.77 nm, (Figure 5c). Likewise, Song et al. [17] also reported the impact of 

TiO2 NPs towards reduced surface roughness of PVDF membrane, but the 

degree of difference was so minute (4 nm) to be considered effective in 
mitigating membrane fouling (Figure 5d).  

 

3.2. Thin film nanocomposite membrane 
 

With the development of thin film composite membrane over the past 

decade, the integration of nanoparticles in various fields have also drawn the 
attention of the researchers to modify the TFC membranes into thin film 

nanocomposite membranes. TFC membranes are majorly RO and NF 

membranes with the potential to remove salts through desalination of sea 
water and brackish water, emerging organic pollutant including 

pharmaceuticals and pesticides, and heavy metals. TFC membranes have 

several advantages over the conventional asymmetric membranes for high 
solute separation with high fluxes that is managed by optimized support layer 

of the membranes. 

The preparation of TFN membranes is based on the same procedures as 
of TFC membrane with the difference of incorporation of NPs in the surfaces 

and support layer. During the fabrication step of the TFN membranes, NPs of 

various particle sizes are introduced in surface and sublayer that make the 
membrane more hydrophilic and/or alter the surface charge density of the 

membrane without compromising the membrane selectivity. TFN membranes 

can also be used for RO, FO, and NF for the removal of said foulants and also 
including organic solvents. The most commonly used procedures for the 

preparation of TFN membranes include in situ interfacial polymerization of 

polyamide and dip coating. Table 2 summarizes various types of TFN 
membranes, NPs modifications, and the obtained properties after 

modification. 

 

 

 
 

 
 

Fig. 4. Role of NPs in improving mechanical strength of polymer membranes, (a) effect of ZnO NPs on the mechanical strength of PVDF membrane [23]; (b) 

effect of TiO2 NPs concentration on the mechanical strength and elongation at break of PVDF membrane [39]; (c) (d) stress vs. strain curves for the 

PVdF/LiClO4/TiO2 membranes, variation of Young’s modulus with the TiO2 content for PVdF/LiClO4/TiO2 membranes, respectively [51]. 
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Fig. 5. Effect of NPs addition to the membrane surface roughness, and its relation to the fouling of the membrane. (a, b) surface roughness parameters of TiO2-PVDF 

nanocomposite membrane, and its relationship to the fouling of the membrane, the concentration of TiO2 NPs increased from T1 to T5 [39]; (c) surface roughness (detected using 

AFM) of the PES membranes by addition of TiO2 NPs and modified TiO2 NPs [48]; (d) surface roughness parameters (measured by AFM) of (a) PVDF-PEG membrane and (b) 

PVDF-PEG-TiO2 NPs composite membrane [17].  

 

 
 

 
Table 2 

Types of nanomaterial used to fabricate TFN membrane and changes in membrane properties acquired after modification.  

 

Membrane Modifier Modification Technique Application/ foulant Membrane properties and performance evaluation 

PSf GO  IP of PA RO/ 2000 ppm NaCl High flux, antibacterial activity, chlorine resistance [52] 

PSf GO nanosheets  IP of PA -- Antimicrobial activity [53] 

PSf Al2O3 IP NF Excellent molecular separation properties [54] 

Arylene sulfide 

sulfone 

O-PASS 

SiO2 and ZIF8 Filtration of OPASS 

solution  

UF Dye rejection [55] 

PSf Ag NPs IP of PA UF Increased salt rejection of NaCl and MgSO4, antimicrobial properties [56] 

polyhedral 

oligomeric 

silsesquioxane 

(POSS) 

TiO2-SiO2 IP of PA  RO Seawater desalination [57] 

PES CNT IP of PA UF Improved separation efficiency [58] 
 

UiO-66 IP of PA RO boron rejection by ∼11% [59] 

PA(TFC) ZnO IP of PA RO Improved water flux and salt rejection [60] 

PA-TFN graphene quantum 

dots (GQDs) 

IP of PA FO Improved surface hydrophilicity, antimicrobial activity [61] 

TFC (ZIF-8)/chitosan 

layer 

chitosan layer coated on 

PVDF 

UF NaCl rejection of >99.5 [62] 

PSS-TFN  ZIF-8 IP of PA  FO Better swelling resistance [63] 

PES SAPO-34 IP of PA  UF Dye removal methyl violet 6B, reactive blue 4 and acid blue 193) from 

water [64] 

PSf Functionalized 

MWCNTs 

IP of PA FO High water permeability and acceptable salt rejection [65] 

PSf Modified SiO2 Piperazine-TMC NF Anti-fouling ability, long-term stability [66] 
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3.2.1. Interfacial polymerization 

 

The most common TFN membrane is polyamide (PA) membrane, where 

PA layer is formed on the surface of the porous support membrane. The 

process of IP initiated by depositing the reactive diamine monomer on the 
surface of the porous support membrane. Mostly, the membrane is dipped in 

the monomer solution of m-phenylenediamine (MDP), followed by 

immersion into organic solution of second reactive monomer, usually di/tri-
acid chloride (trimesoyl chloride (TMC)). The highly reactive monomers start 

polymerization as soon as they come into contact and form a highly cross-

linked thin layer of PA on the surface of the porous support membrane, which 
remains attached on the membrane. The polymerization process also prevents 

further diffusion of TMC into DMP that terminates the polymerization 

leaving a thin layer (up to 500 nm) of PA on the membrane. The chemical 
properties of the monomers play an important role in determining the 

thickness of the film, roughness, hydrophilicity and surface charge. Based on 

the chemical properties of the monomer, the membrane can be optimized for 
solute rejection for example zwitterion-based polymers possess strong 

antifouling and anti-biofouling potential for TFC membranes due to their high 

hydrophilicity, durability, and environmental stability [67]. The zwitterionic 
polymers contains both anionic and cationic groups within the same monomer 

unit, that strongly interact with surrounding water molecules via the 

electrostatic forces and form a tighten hydro-layer over the membrane [67-
69]. It is also found that the zwitterionic polymer brushes extend the surface 

carboxylic groups that provide significant antifouling and anti-biofouling 

potential during water purification e.g., FO. [67, 68]. 
As mentioned previously that TiO2 NPs have gained much attention in 

various fields including water filtration because of its numerous 

characteristics, TiO2 NPs have also been applied for the preparation of TFN 
membranes. Lee et al. [70] introduced a new method where aqueous solution 

of MDP and organic solution of TMC containing substantial amount (about 

5%) of TiO2 were in situ polymerized and the resulting PA layer was enriched 
in TiO2 NPs. The resultant NF membrane rejected more than 95% of MgSO4 

salt with stable performance due to the presence of TiO2. Emadzadeh et al. 

[71-73] prepared a modified porous substrate by dispersing TiO2 NPs in PSf 

and the PA thin film layer was established on the surface of PSf-TiO2 

membrane by first pouring 1,3-phenylendiamine (MDP) onto the substrate for 

2 min, removed the excess MDP, and then pouring 1,3,5-benzenetricarbonyl 
trichloride on the MDP anchored substrate. The resultant TFN membrane 

showed 120% higher flux while 10 mM NaCl feed solution was used for FO 

process. Moreover, the internal concentration polarization (ICP) was also 
reduced several folds due to the modified porous substrate used to prepare 

TFN membrane. 

SiO2 NPs also showed the improve membrane morphology and 
performance of TFN membranes due to their strong surface energy, small 

size, thermal resistant and the most important is environmentally inert 

behavior that makes them applicable in a wide range of industries. Niksefat et 
al. [74] dispersed the SiO2 NPs in the aqueous solution of MDP. The prepared 

porous support of PSf was immersed in aqueous solution of SiO2 NPs and 

MDP for some time and later the amine functionalized substrate membrane 
was soaked into organic solution of TMC for IP process. The resultant TFN 

membrane showed flux of 36 ± 2 LMH that was nearly twice the flux of TFC 

membrane. Moreover, the salt rejection was also more than 90% with 10 mM 

NaCl as feed solution and 2 mM NaCl as draw solution. Yin et al. [75] used 

porous MCM-41 (∼100 nm) and non-porous spherical silica NPs (∼100 nm) 

to fabricate the TFN membrane at concentrations ranging from 0 to 0.1 wt%, 

and reported that the MCM-41 NPs dispersed well in PA thin-film layer and 
suggested that the internal pores of MCM-41 NPs contributed significantly to 

the increase of water permeability. Where the permeate water flux increased 

from 28.5±1.0 to 46.6±1.1 L/m2 h without compromising the salt rejection 
with the incorporation of MCM-41 NPs. 

Recently, GO and carbon nanotubes (CNT) have been used for the 

preparation of several kinds of membranes including RO, FO, and NF 
membranes: GO is used due to its numerous hydrophilic functional groups 

[52], CNTs due to the similarity between their fluid transport properties and 

those of water transport channels in membranes [76-78]. The application of 
both GO and CNTs has been reported to improve various properties of the 

membrane s including modulus and tensile strength, water flux and 

permeability, and rejection. Chae et al. [52] reported that a TFN membrane 

with GO embedded in its PA layer exhibited high water permeability, anti-

biofouling property, and chlorine resistance without loss of salt rejection. The 

water permeability and anti-biofouling property of the GO-TFC membrane 
were enhanced by approximately 80% and 98%, respectively, as compared to 

TFC membrane only. Amini et al. [65] prepared TFN FO membranes by 

applying amine functionalized multi walled CNTs (MWCNTs) into PA thin 
film prepared by IP process. The performance of the prepared FO membrane 

was evaluated by using NaCl as feed (10 mM) and draw (2 mM) solutions. 

The TFN membranes exhibited 95.7 L/m2 h flux with 0.1 wt% functionalized 

MWCNTs that was nearly 160% higher than TFC membrane. The high water 

flux with higher MWCNTs loading was attributed to the increase in 

hydrophilicity of the membrane that was evaluated with decrease in the CA.  
 

3.3. Surface located nanocomposite 

 

It has been previously seen that incorporation of NPs into membrane 
matrix improve the membrane intrinsic properties e.g. membrane porosity, 

membrane morphology, membrane internal resistance, membrane pore size, 

membrane mechanical strength, and membrane charge. In both types of the 
membranes stated above (nanocomposite and thin-film nanocomposite), NPs 

remain partially covered by the polymer. It is widely reported that blending of 

NPs with polymer solution allows polymer to encase large amount of NPs, 
which prohibits the NPs to reveal their actual properties [28, 38, 79]. 

Therefore, huge efforts are allocated to develop membranes with maximum 

exposure of NPs and different procedures have been developed and adopted 
to attain NPs exposure and their stability on membrane surface. The major 

characteristics possessed by surface located NPs membranes are: decreased 

fouling tendency of the membranes, maximum hydrophilicity depending on 
the type of NPs, and reduced intrinsic resistance of membrane. Below, some 

of the commonly practiced techniques to incorporate NPs on the surface of 

the membrane are discussed. 
 

3.3.1. Self-assembly 

 
Self-assembly is a technique where NPs get assembled on the membrane 

surface without an external aid. This process is widely used to immobilize 

different NPs on the membrane. In self-assembly, membranes are 
functionalized with different groups that are capable to produce hydrogen 

bonding with NPs. Some of the functional groups include –COOH, -SO3
-H+, 

and sulfone groups. If the membranes do not have any functional group, 
membrane is pretreated to induce active functional group that can develop 

hydrogen bonding with NPs. The TiO2 NPs can be self-assembled on PSf 

based membrane (with PA thin-layer) by dipping the membrane in colloidal 

solution of TiO2, which allows self-attachment of TiO2 with –COO group of 

polymer [80]. The possible assembly schemes of TiO2 on membranes are 

given in Figure 6a, and schematic of self-assembled TiO2 on membrane is 
shown in Figure 6e. Similar kind of interaction is also shown in the Figure 6b: 

between TiO2 and PES film, and TiO2 and DEA modified surface of PI [81]. 

Bae and Tak [82, 83] successfully immobilized TiO2 NPs on a commercially 
available PES MF membrane, where the membrane was immersed into 20% 

H2SO4 for different time durations (soaking for more time generated more 

sulfonic acid groups at the membrane surface) followed by immersion of 
membranes in laboratory made transparent TiO2 colloidal suspension. It was 

seen that the membrane soaked for more time in H2SO4 contained more TiO2 

NPs on its surface (Figure 6d), which was ascribed to the formation of more 
sulfonic groups on the membrane as a factor of dipping time. The membranes 

with self-assembled NPs also exhibit self-cleaning potential and 

photocatalytic degradation of organics; only partial membrane surface 
possesses such properties that is covered by NPs, rest of the membrane 

surface shows fouling and inability of self-cleaning [35, 84, 85].  

 

3.3.2. Coating/deposition 

 

Coating/deposition is the simplest technique used to immobilize NPs on 

the membrane surface. Either a membrane is dipped into NPs solution and 

pulled back with a constant slow rate [dip coating (Figure 7a)] or NPs 
solution is filtered through the membrane so as to force NPs to stay on the 

membrane: deposition [86, 87] (Figure 7b). Fan et al. [88] prepared 

hydrophilic PSf membrane by filtering polyaniline nanofiber aqueous 
dispersion and found a sharp increase in water flux and huge decline in 

contact angle i.e. 64o and 27o for simple PSf membrane and PANI nanofiber 

deposited membrane, respectively. Gao et al. [89] deposited NPs on cellulose 
acetate (CA) membrane by filtering 200 mg GO-TiO2, P25 TiO2, and TiO2 

microsphere NPs solution through CA membrane followed by 30 sec N2 gas 

treatment. A deposition procedure usually results in a sharp decline of 
membrane water flux due to pore blocking and pore plugging by NPs. As 

shown in Figure 7c, the membrane with P25 TiO2 NPs deposition showed the 

least flux that was attributed to the very small size of P25 plugging the pores. 
Irrespective of the low flux, membranes with different kinds of NPs deposited 

on the surface demonstrated TOC degradation in feed solution under UV light 

(Figure 7d), which was maximum with GO-TiO2 deposited membrane that 
was in accordance to the high photocatalytic oxidation potential of GO-TiO2 

NPs as compared to other NPs. 

Although membrane performance improves initially by depositing NPs 
on the membrane, NPs leach as a factor of time and membrane efficiency 
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decreases [38, 86]. This simple method seemed to be largely scalable but non-

affirmative behavior of NPs on the membrane prohibited coating/deposition 

of NPs to be largely practiced. 

 

 

 

 
 

Fig. 6. Self-assembly mechanism of different NPs on different polymer based membranes: (a) mechanism of self-assembly of TiO2 nanoparticles [35, 80]; (b) mechanism 

of self-assembly of TiO2 nanoparticles: (a) on PES surface (b) on DEA-modified surface of PI [84]; (c) chemical bond structure model of the PES/TiO2 composites: [81]; 

(d) SEM photographs of the surface of neat and composite membranes (×20,000). (a) Neat membrane, (b) composite-1, (c) composite-2 and (d) composite-3 (composite 

1-3 refers to the time for which membrane was soaked in sulfonic acid 0, 1, 2, 4 h) [82]; (e) schematic drawing of hybrid membrane self-assembled by TiO2 NPs [80]. 

 
 

 

 

 

 

 
 

Fig. 7. (a) A schematic of dip-coating procedure and antimicrobial property of membranes [86]; (b) filtration deposition of different NPs on the memrbane: [(a) schematic 

diagram of P25 membrane (left side) and FESEM image of P25 membrane surface (right side), (b) schematic diagram of TiO2 microsphere membrane (left side) and 

FESEM image of TiO2 microsphere membrane surface (right side (inset: digital photo of TiO2 microsphere membrane)], (c) schematic diagram of GO–TiO2 membrane 

(left side) and FESEM image of GO–TiO2 membrane surface (right side (inset: digital photo of GO–TiO2 membrane) [89]; (c) changes in permeate flux of control (CA 

membrane), P25, TiO2 microsphere and GO–TiO2 membrane with different TMP, respectively; (d) Residual TOC rate in permeate water filtrated through different 

membranes [89]. 
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3.3.3. Electrostatic attraction 

 

Electrostatic attraction is the process in which two differently charged 

molecules are bounded through physical attraction: electrostatic bonding. To 

attain electrostatic bonding, molecules must possess opposite charges. 
Usually, it is seen that most of the polymers are negatively charged. 

Therefore, NPs are tailored with a positively charged group that can interact 

with the polymer to successfully bound to the membrane through electrostatic 
attraction. Ben-Sasoon et al. [90] used PEI to charge Cu NPs (amine groups 

of PEI attracted with cupric ion to bind strongly with Cu NPs), as a result 

amine group of PEI produced electrostatic attraction with COO- group of 
membrane. The membranes prepared with electrostatic interactions performed 

well as antibacterial membranes (due to presence of antibacterial Cu NPs) but 

leaching of active antibacterial species (Cu2+ or Cu NPs) suggested 
insignificant use of such membranes for long time and wide range 

applications. A high amount (30%) of Cu+2 and Cu NPs were detached from 

the membrane in first two days. Therefore, to sustain antibacterial activity of 
such membranes, Cu NPs or Ag NPs are required to be continuously 

recharged on the membrane surface [90].  
 
3.3.4. Layer-by-layer assembly 

 

In layer-by-layer assembly, several layers of materials are coated on the 

membrane by any or multiple procedures described earlier. During this 

procedure, several layers of NPs are deposited on the membrane. Park et al. 

[91] prepared the membrane with LBL deposition of MWCNTs. Initially, a 

PSf membrane was negatively charged under treatment of 0.5M H2SO4, the 

negatively charged PSf membrane was alternatively dipped into cationic 
poly(allylamine hydrochloride) and anionic MWCNTs/poly(acrylic acid) 

solutions. Finally, a thermal annealing was done at 180 oC to induce 

crosslinking of MWCNTs and PE (Figure 8a). The resultant membranes 
exhibited high flux and high ion rejection. Wang et al. [92] prepared a PAN 

UF membrane with LBL deposition of modified GO NPs. At first, they 

hydrolyzed the PAN UF membrane by immersing in 2M NaOH solution at 65 
oC for 30 min. Meanwhile, 0.25 wt.% PEI and 0.05 wt.% PAA solutions were 

prepared. In PEI solution, required amount of GO was dispersed to prepare 

modified GO i.e. PEI/GO. The hydrolyzed membrane was rinsed with pure 
water. The PEI-GO solution was filtered through hydrolyzed membrane 

followed by PAA solution filtration, and the filtration process with both 

solutions was repeated according to required deposition layer thickness. The 
membrane was rinsed gently, and dried at 50 oC for 2 h. Then the membrane 

was immersed in PVA solution at 75 oC for 30 min. Finally, the membrane 

was cross-linked with 3% glutaraldehyde solution (Figure 8b). The resultant 
membrane showed high level of selectivity for dye and monovalent ions and 

produced very high flux. 

 
 

 

 

 

 
 

Fig. 8. Layer-by-layer assembly of NPs on the membrane surface: (a) schematic illustration of the fabrication of nanocomposite (MWCNT-PAA/PAH)n 

multilayers via layer-by-layer assembly on PSf substrate [91]; (b) schematic illustration of the preparation of GO and polyelectrolyte complex nanohybrid 

membranes [92]. 
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3.3.5. Chemical grafting 

 

The main challenge with the surface immobilized NPs is the leaching of 

NPs over a long duration of use. The leaching of the NPs could cause 

potential threat to the biological system of the water that should be avoided. 
Suitably, chemical grafting produces strong association of NPs with the 

membrane surface and resolves the leaching issue of NPs to a greater extent. 

However, the leaching of ionic species from NPs remains inevitable: leaching 
of usually Ag and Cu ions. The chemical grafting method is partly related to 

the self-assembly or electrostatic attraction method. But in chemical grafting, 

both membrane and NPs are chemically modified with strongly opposite 
charged groups, which produces a strong chemical bond at contact. Ling et al. 

[21] recently introduced a series of steps to immobilize SiO2 NPs on PVDF 

membrane. First, a PVDF membrane was plasma treated to obtain -OOH 
groups on the membrane surface. Then, methacrylic acid (MAA) was 

chemically associated with -OOH group, and finally, amine group modified 

SiO2 NPs solution was prepared. The MAA modified membrane was dip 
coated into NH3-SiO2 NPs solution (Figure 9a). The final membrane was 

antifouling with high flux recovery by hydraulic flushing, and had a low 

attraction between organic foulant and membrane surface. Likewise, PEI 
modified Ag NPs were coated on the surface of PSf UF membrane that 

improved membrane selectivity and membrane flux with antibacterial 

properties [93]. In detail, oxygen plasma activates the PSf membrane skin 
layer with the addition of active and/or charged functional groups. The 

activated membrane is subsequently incubated with charged or functionalized 

NPs that generates electrostatic and covalent bonds to form a persistent 
coating of reactive NPs on the membrane (Figure 9b). 

 

 

4. Challenges and future perspectives 

 
An overall comparison among different membrane modification methods 

is presented in Table 3, which is our interpretation of the reported studies in 

the above-mentioned literature. Please note that it is not always 
straightforward to interpret and compare results, because many parameters 

may be influenced simultaneously by one modification method; here we only 

attempt to give a general impression. All the modification techniques improve 
the membrane performance; sometimes more fouling is reported but the 

absolute flux value increase by modification and occasionally less fouling is 

reported without any significant effect on the water permeation level. Mostly, 
nanocomposite membranes show completely different behavior than 

membranes with surface located NPs. At times, surface located membranes 

show more advantages than nanocomposite membranes and sometimes it 
shows more disadvantages. It is important to note that the advantages and 

limitations mentioned in Table 3 regarding surface located NPs are described 

based on the limited number of techniques which are widely practiced out of 
many different reported techniques. Overall, two most important factors 

considered for modification include stability of NPs in membrane system and 

exposure of NPs to the feed/foulant solution. In a larger picture, 
nanocomposite membranes provide excellent stability of NPs in the 

membrane system because NPs are completely embedded in the polymer but 

less exposure of the NPs is experienced, and surface located NPs membranes 

express complete exposure of the NPs but less stability of NPs in the 

membrane system. It is expected that membrane properties can be tuned for 

specific applications through the discussed methods, although they still need 
to be developed further in such a way that they allow even better and more 

environmentally friendly control over modification.  

The nanocomposite membranes have been targeted as a dominant future 
technology for the purification of water using filtration techniques. However, 

to meet the future demands of safe potable water and to meet the stringent 

potential regulations, the fabrication of robust, durable and economically 
viable nanocomposite membranes with high water permeability and high 

selectivity deemed necessary for various kinds of water treatment. The 

permeability and selectivity of the membrane is highly dependent on 
membrane structure that is controlled by the polymer and NPs to be used 

along with the fabrication process. Thus, optimized polymer concentration 

and NPs loading plays a vital role in improving the membrane performance, 
which can be attained by understanding the deep phenomenon and to optimize 

the fabrication methods. 

It is also important to assess the leaching of nanomaterials from the 
nanocomposite membranes and their toxicity to the environment during water 

purification. At first, health issues regarding the production of nanomaterials 

should be considered with great concerns that include from the exposure of 
labor in the industry at large scale nanomaterials production and the fate and 

impact of leached nanomaterials from the nanocomposite membrane. 

Moreover, nanomaterials itself are very expensive that possess major 
contribution in the cost of nanocomposite membrane. Thus, the leaching of 

the nanomaterials from the nanocomposite membranes would directly 

increase the cost of nanocomposite membrane and the potentially attained 
benefits from the nanomaterials would be outweighed due to the high cost of 

the nanocomposite membrane [94]. Also, the cost of environment by the 

leaching of the nanomaterials should be completely determined by keeping in 
view several previous cases such as Dichlorodiphenyltrichloroethane (DDT), 

that showed promising results against the insects and largely used in the 

agriculture but later it became the Achille’s heel. It has been reported about 

several kinds of NPs that they were leached out of the nanocomposite 

membrane during different steps of the filtration and lack the durability inside 

membrane matrix. Under normal conditions, the NPs show stability but under 
high pressure, high temperature, and chemical cleaning process the NPs are 

washed out of the membranes. Therefore, there is an urgent need for in-depth 

studies and advancement in the fabrication methods for the durable 
nanocomposite membranes that allow the long-term operational cycles of the 

membrane including filtration and cleaning without leaching of NPs. For 

durability of nanomaterials in nanocomposite membranes, the compatibility 
of polymer and nanocomposite could play an important role. The tightly 

bound nanomaterials with polymer could prevent the leaching of 

nanomaterials from the nanocomposite membrane and reduces the 
environmental foot-prints. 

 

 

 

 

 
 

Fig. 9. Chemical grafting of NPs to the polymeric membrane surface: (a) schematic protocal of PVDF membrane functionalization, illustrating Argon plasma treatment, 

graft copolymerization, and NPs binding [21]; (b) post-synthesis grafting process for the fabrication of reactive membranes [93]. 

 

 

  

 

 

 329 



H. Younas et al. / Journal of Membrane Science and Research 6 (2020) 319-332 

Table 3 

Comparison of different modification techniques after application of NPs.  

 

Modification method Advantages Limitations 

Nanocomposite/mixed matrix • A simple technique 

• Large amount of NPs can be loaded in the membrane. 

• Different kind of polymers can be used for membrane preparation. 

• Different kind of NPs can be applied to the membrane. 

• NPs remain highly stable in the membrane. 

• Environmentally safe technique because NPs do not leach out of the 

membrane. 

• Cost-effective. 

• Agglomeration of NPs is largely experienced. 

• Huge number of NPs is masked by the polymer. 

• Alteration in pore size, porosity, and void structure is inevitable 

and uncontrollable. 

• Uneven distribution of NPs in the membrane matrix. 

• Instability in reproducibility because the level of agglomeration 

of NPs remains largely uncontrollable. 

• Active sites of NPs may interact with polymer and not exposed. 

Thin film nanocomposite • The voids structure of the membranes is not affected. 

• Agglomeration of nanomaterials could be reduced by well dispersion 

in aqueous MDP. 

• The resultant membrane exhibits increased tensile strength. 

• Nanomaterials are masked by the IP of PA. 

• Loading of nanomaterials is limited due to interruption in IP 

process. 

Surface located NPs • NPs remain unmasked by any of the membrane material. 

• The loading of NPs is controllable. 

• Pore size and porosity can be altered based on the treatment adopted 

(plasma treatment, radiation treatment). 

• Some techniques are environmentally secure as NPs are not leached 

easily (chemical grafting). 

• Active sites of NPs are completely exposed. 

• Highly reproducible (e.g. chemical grafting, LBL assembly, 

deposition). 

• The stability of NPs on the membrane is weak. 

• In some techniques (coating/deposition) pores are plugged and 

blocked by NPs (coating/deposition, LBL assembly). 

• Most of the techniques possess potential hazards for 

environment (coating/deposition) because of NPs leaching. 

• Most of the techniques are economically ineffective because of 

number of chemicals used and the requirement of special 

equipment. 

 

 

 

The energy consumption is an important factor for nanocomposite 

membranes during separation process especially with high pressure filtration 
processes. For example, RO and NF both require large amount of energy that 

increase the operational cost for the application of the membranes. Therefore, 

developing new methods for fabrication of high permeability nanocomposite 
membranes in addition to energy harvesting devices and low-carbon foot 

prints processes is also the need of the time. With high permeability, less 

pressure is required to exert on the membrane for water to pass through across 
the membrane that consumes less energy. Moreover, under low pressure less 

foulants accumulate on the membrane and fouling is reduced that enhances 

the life time of the membrane and reduces the usage of chemicals for the 
cleaning of the membrane. Thus, by deep consideration of only one factor, 

permeability, overall energy consumption and running cost of the system 

decrease, which could help in the widespread application of the RO and NF 
membranes. Therefore, the optimal design of the installation system and 

selection of polymer materials and nano-materials for nanocomposite 

membrane by consideration the specific properties that influence the 
permeability and strength (pore size and porosity, thickness, tensile strength 

etc.) could help to achieve the low energy consuming membranes. 

The influential factors in the fabrication of nanocomposite membrane 
includes type of nanomaterials used with specific physicochemical properties 

namely surface charge, surface area, size, compatibility with polymer and 
type of polymer itself. The nanocomposite membranes have proven to be 

promising membranes with showing significant performances regarding high 

water permeation and high solute rejections in various water treatments such 
as desalination, removal of organic pollutants, and removal of bacteria with 

high flux recovery potential. Nevertheless, still there is a need to conduct 

deep research and to develop high throughput nanocomposite membranes in 
wide range of applications including heavy metal removal, dye removal, and 

persistent and emerging organic contaminants removal from water and 

wastewater. 
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