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Over the past decade, many applications were intended for filtration by membrane technology especially the thin film composite (TFC) membranes. In advanced developments of 
thin film membranes, an attempt was made to spread a new generation of membranes called thin film nano composite (TFN) membranes. However, in the last generation of TFNs, 
an ultrathin selective film of nanoparticles is coated on the porous sub-layer with different procedures (i.e. interfacial polymerization (IP), dip coating and Plasma polymerization) 
which contained nanoparticles in a scale of 20-200 nm.  Thin film nanocomposite membranes are the last generation of RO membranes which are known as the best appliance in the 
nanofiltration researches. In this realm, with the help of nanotechnology, membrane science has introduced a novel gamut in science and technology. By using new nanoparticles 
and nanocomposites among the structure of membranes, the TFNs were born to help the separation and purification processes. To fabricate high efficiency thin film nanocomposites, 
many manners, theories and additive particles are modified and chosen with regards to time and applications which can increase selectivity, permeability and porosity in addition to 
the reduction of fouling or improvement of salt rejection. The current review is written to seek the maze of thin film nanocomposite membranes in the past few years with the goal of 
clarifications of this novel method of filtration, its outlook, nanoparticles and applications which were used before and can be used in the future.
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• Developments of TFC membranes
• Applications of nanoparticles in the TFN
• Performance of TFN new generations
• Fabrication and evaluations of TFN

juice industry, energies and other significant separation fields [1, 4-10]. With 
regards to worldwide climate changes, the desalination process and pure 
water will be an important concern. Thus, purification of water or desalting 
water with the filtration method should be considered [11, 12]. In this field, a 

1. Introduction
             
      Recently, from the academic world as well as industrial sectors, many 
applications were intended for filtration methods [1-3]. The most important 
of these applications are waste water treatment, medical uses, liquid food and 



M. Khajouei et al. / Journal of Membrane Science and Research 3 (2017) 2-12 

variety of membranes due to their function and their performance can be 

selected; as an example, particle filtration, microfiltration, ultrafiltration (UF 

as the pre-filtration of NF or RO), nanofiltration (NF) and reverse osmosis 

(RO) filtration. Their differences are in the pore sizes, operation conditions 

(temperature, pressure, pH and etc.), basic materials and functions. Table 1 

has been gathered and prepared to show comparative data regarding the 

performance and the characteristics of each membrane.   

One of the most common membrane methods for desalination is the 

employment of reverse osmosis membranes (RO). Utilization of these 

membranes due their many advantages, for instance their low preparation 

cost, higher water flux, higher stability, and low membrane fouling, is widely 

increased [13, 14]. Although many methods exist for this purpose, using RO 

membranes has obtained the most agreement in numerous situations.  

 
Table. 1. Comparison data about membranes employment for the water purification. 

Membrane 
Principal generation 

materials 

Separating 

material size 

(µm) 

Operating 

pH 

Operating 

Pressure 

(psi) 

Operating 

Temperature 

Mean 

Rejection 

Types of 

material in size 
Ref. 

Particle filtration 

(various types) 

 >1 Depends Depends Depends >90% Sand, flour, 

yeast cell 

 

Microfiltration Cellulose acetate, polysulfone, 

polyether sulfone 

0.1 - 10 Depends 14-58 Depends 90-98% Bacteria, paint 

pigment 

Perry's 

Chemical 

Engineers' 

Handbook 

Ultrafiltration Cellulose acetate, polysulfone, 

polyether sulfone, polyamide 

0.01 - 0.1 2-13 9-100 Depends 90-100% 

pathogen 

removal 

Silica, carbon, 

albumin 

[93-96] 

Nanofiltration  0.01-0.001 Large 

intervals 

High range High range 90-99% Salts and metal 

ions 

[97] 

Reverse osmosis cellulose triacetate, Cellulose 

acetate, polysulfone, polyether 

sulfone, polyamide, trimesoyl 

chloride, MPD 

0.001-0.0001 6.8-8.1 10-1200 High range 90-99.98% Aqueous salts, 

metal ions, 

sugars, virus 

[98] 

 
Based on the structural characteristics, RO membranes are separated in 

two principal branches which are named dense asymmetric membranes and 

thin film composite membranes. The second group is more admitted. Both 

have a porous substrate layer known as sub-layer usually in the polymer 

gender. Dense asymmetric membranes have a dense layer upon that 

polymeric layer but the thin film composite groups have a selective thin layer 

as interfacial polymeric surface on their sub-layer [13, 15]. In recent 

developments of thin film membranes, an attempt is made to spread a new 

generation of membranes called thin film nanocomposite (TFN) membranes 

instead of the traditional thin film composites (TFC)  [16, 17]. In the 

fabrication and preparation of TFC membranes, no nanoparticle is used and 

with regard to the wide range of nanoparticles and their advantages, a lot of 

benefits have been lost. For instance, some nanoparticles could increase the 

surface porosity or also hydrophilicity such as TiO2 nanoparticles [18]. 

In the last generation of TFNs, an ultrathin selective film of nanoparticles 

is coated on the porous sub-layer with different procedures (i.e. interfacial 

polymerization (IP), dip coating and Plasma polymerization) which has a 

thickness between 20-200 nm [15, 19, 20]. As shown in Figure 1, the 

structure is composed of two distinct layers where the thin film polymeric 

layer is coated on the porous base layer [15]. 

 

 
Fig. 1. The cross-section SEM images of TFN-SRNF membrane [15]. 

 
Thin film nanocomposite membranes are the last generation of RO 

membranes which are known as the best appliance in nanofiltration 

researches. Due to the change of nanocomposite in lieu of traditional 

composites in their structure, they have obtained many new advantages. TFN 

membranes have prepared excellent situations for purification of any waste 

water with any kind of salt, improved membrane surface, capability of 

separating organic compounds or salts with low molecular weight (up to 200 

g.mol
-1

) and even very small molecules in the liquid phase [21]. In addition, 

containing a wide range of selectivity makes them preferable and many 

scientific articles and essays were published in this realm [12, 13, 22-24]. 

The current review is written to seek the maze of thin film 

nanocomposite membranes in recent years with the goal of clarifications of 

this novel method of filtration, its outlook, nanoparticles and materials which 

were used before and can be used in the future. In addition, the comparison of 

nanocomposite membranes and the traditional thin film composite 

membranes, their advantages and disadvantages are surveyed. 

 

 

2. TFN membrane structure 
 

As mentioned before, TFN membranes are formed of at least two 

separated parts. One selective polymeric layer with a thickness of up to 500 

nm is coated on a porous layer named substrate or sub-layer with different 

methods. Figure 2 shows the SEM image of the two discussed layers [25]. 

Two principal strategies are considered in the fabrication of layers of thin 

film nanocomposite membranes: use of nanoparticles 1) in a substrate layer to 

develop characterizations or/and 2) in a selective layer to improve thickness, 

roughness, selectivity and permeability. In this category, nanoparticles are 

also used with regard to their valency and operations in different conditions. 

Some procedures are interfacial polymerization (IP), dip coating and 

Plasma polymerization [26]. Among these methods, interfacial 

polymerization is more common. However, in this method, large amounts of 

the costly solvent are needed, but all of the above methods have advantages 

and disadvantages. For instance, the IP methods are mostly used for the 

synthesis of polyamide monomers and the desired product is obtained at a low 

temperature, with a fast kinetics [27]. For fabrication of protective polymers 

against corrosion, cold, and UV (i.e. plastics), the dip coating method is 

reasonable. The plasma polymerization is also often used in the gas systems, 

and it is very useful for a fabrication of polymers in micrometer diameters 

also when the polymer is solvent insoluble [28]. Thus, due to the polymer 

properties of the thin layer and also their applications, membranes can be 

employed in various operating situations. Figure 3 shows a schematic of the 

interfacial polymerization method in which nanoparticles are used in the top 

layer and Figure 4 shows a schematic with an example TiO2 as a nanoparticle 

from an experiment by Peyravi et al. [15]. 

Generally, the nanoparticles influence on three important traits of a 

membrane can be concluded: 1) hydrophilicity, 2) roughness and 3) 

performance. 

Experiments and studies have shown that most of the nanoparticles are 

used to provide a better hydrophilicity and porosity on the membrane surface. 
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Thus, the flux and roughness will be subsequently changed. 

On the other hand, with utilization of nanoparticles in the thin film active 

layer, the pores size could be decreased and due to this pore size reduction, 

the rejection of the membrane can be influenced. Further, due to the inorganic 

nature of nanoparticles and their utilization on the surface of membranes, 

inflation and swelling are decreased and a high chemical and mechanical 

stability will be achieved in the TFN membranes. According to schematic 

diagram of Figure 5, a relation between three main components of the 

membrane triangle on the structure and performance of TFN will be perused 

and discussed in this article. 

 

 

Fig. 2. SEM images of a-2) PSF base layer and b-2) thin film coated layer [25]. 

 
2.1. Porous sub-layer 

 

This is an important part of the membrane as the base component. Many 

articles and researches in this field have been published and manufacturing of 

the porous substrate has been continued with different methods and materials. 

In the last decade, lots of improvements and developments have been 

observed in this field, for instance, decreasing thickness or increasing the 

stability of the substrate layer [24, 29]. 

Selectivity in this layer is not important but it should prepare a strong 

base for the top selective and thin film layer. As a result, stability, 

permeability, hydrophilicity, high flux, and well pore distribution are crucial 

characteristics that should be attended to. Thus, materials and particularly 

nanoparticles should be selected with high accuracy to get the most benefits. 

Some papers and essays are discussed and their results are given. 

A polyacrylonitrile (PAN; MW=150,000) is one of the polymeric 

materials which was used for production of substrate with a thickness of 

about 60 macro meters via the phase inversion method by Kang et al. The 

sub-layer with a pore size of 10 nm on the front and 20-50 nm on the back 

side was fabricated and it was coated with a different charge layer process. 

This caused a very good porosity and also compatibility between the sub-

layer and thin layer [30]. 

Another group of scientists that used TFN membranes in their 

investigation were Eun-Sik Kim and Baolin Deng. In their experiments, the 

porous sub-layer was made of polysulfone (PSf) that was used many times as 

the material of substrates in the fabrication of TFN due to its high hydrophilic 

surface. In this project, the PSf support layer of the membrane (30 k MWCO) 

was made with ultrafiltration (UF) to increase the performance and the good 

hydrophilic membrane was achieved in addition a narrow pore distribution 

[31]. 

In the same year with Kim and Deng, Fathizadeh et al. prepared another 

porous layer for their membrane (PES) via the phase inversion method. In that 

process, the DMAC solvent was employed to dissolve a mixture of 15 wt% 

PES and 5 wt% PUP. The TFN membrane was synthesized with the 

interfacial polymerization. In this mixture and the membrane that were 

fabricated, a high flux and rejection yield are resulted [32]. 

In year 2013, Ma et al. also introduced a polysulfone nano-composite 

substrate as the porous layer. The zeolite nanoparticle was incorporated in 

polysulfone to improve the water flux. Due to the addition of nanoparticle 

into the sub-layer, surface improvement porosity was shown and a greater 

hydrophilic membrane with higher water permeability is achieved [33]. 

A novel substrate was fabricated by Zhong et al. which has new 

characters [34]. For the manufacturing of this membrane, a thin film was 

coated inside the hallow fiber substrate. The sub-layer was made of 

sulfonated polyphenylene sulfonates. As mentioned before, poly sulfone is a 

common substrate [35, 36]. In this category of development, nanofibers have 

been considered in recent years because of their fantastic available surface 

and high porosity [37, 38]. 

You et al. were one of those scientists who manufactured a novel 

nanofibrous substrate which was used in low pressures and also with high 

flux of water in TFN membranes. This high performance membrane was 

generated with the base of polyacrylonitrile (PAN) for utilizing the separation 

of oil and water emulsion due to its excellent mechanical properties as a 

nanofibrous sub-layer [39]. 

Fabrication of the base sub-layer and also PSF layers have an industry 

scale method and device that is prepared in our research center. Figure 6 

shows the automatic system for generation of PSF or the base ultrafiltration 

layer [40]. In their study, a high permeable thin film membrane was 

fabricated with three different nanoparticles in their structure. Figures 7 and 8 

show the original images of AFM from the base form of the flat sheet 

membrane which was generated with the automatic system and the surface of 

the membrane with the nanoparticles on, respectively [40]. 

 

 

 

 
Fig. 3. Schematic of interfacial polymerization. 
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Fig. 4. Schematic of TFN structure with TiO2 as the nanoparticles. 

 
In Figure 9 dispensation of polymer utilizations in the substrate structure 

is shown. The polysulfone group such as PSF, CPSF, APSF and SPSF are the 

most favorite monomers which were used in recent years and are very stable 

with high flux and the porosity membrane is fabricated with this group. 

However, the new methods and procedures are expected to be found for 

fabrication of new sub-layers also in the form of nanofibers and hallow fibers 

in the near future. Properties of some useful polymers are shown in Table 2. 

 

 

Fig. 5. A relation between three main layers of TFN. 

 

 
Fig. 6. Automatic system for the sub-layer fabrication in the industry scale [40]. 

2.2. Thin film nanocomposite layer 

 

Rapid developments in TFC membranes have led to the fabrication of a 

new class of these membranes which are named TFN membranes including 

the synthetized nanoparticle in their structure to make their performance 

better [41-43]. With regards to their applications, many different monomers 

were used for the generation of this layer to prepare the best thickness, 

roughness and selectivity due to their function. 

Nowadays many efforts have been made and studies have been carried 

out to find an optimum of monomers and process conditions to manufacture 

the thin film nanocomposite polymeric layer. In this fraction, some researches 

and papers in recent years have been surveyed and well discussed. Some 

literatures have been classified into three groups of nanofiltration (NF), 

Forward osmosis (FO) and Reverse osmosis (RO). 

 

 
Fig. 7. Origin AFM image of PES sub-layer generated with automatic device [40]. 

 

 
Fig. 8. AFM image of TFC, with the PES substrate layer [40]. 

 
2.2.1. Nanofiltration (NF) 

 

An experiment was performed by Li et al. and the influence of silica was 

studied in the separation process betterment. They have studied the effect of 

silica nanospheres in the thin layer which coated three different support layers 
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via interfacial polymerization and the results were compared. The main 

studied layers were made of trimesoyl chloride (TMC), piperazine (PIP) and 

polysulfone (PS) [44]. 

 

 
Fig. 9. Comparison of substrate monomers worldwide. 

 
Table 2. Characteristics of common polymers which are used in sub-layer fabrication. 

Polymer Solubility Hydrophilicity 
Chemical 

stability 

Mechanical 

stability 
Ref. 

Polysulfone 

(PSF) 

Good in 

organic 

solvents 

like DMF 

Hydrophobic High High-

strength and 

compaction 

resistant 

[24, 35, 

99, 

100] 

Polyacrylon

itrile (PAN) 

In less-

polar 

organic 

solvents 

Hydrophobic Good High 

temperature 

resistance 

and strength 

[101-

104] 

Cellulose 

acetate 

propionate 

(CAP) 

In ink 

solvents 

Hydrophobic Stable 

structure 

High melting 

point 

[105-

109] 

PES/SPSF 

Polyethersu

lfone/sulfon

ated 

polysulfone 

Needs 

additives 

Hydrophilic Chemical 

resistance 

Good 

thermal 

stability and 

mechanical 

strength 

[110, 

111] 

Polyethersu

lfone (PES) 

In classic 

solvents 

Hydrophilic High 

chemical 

resistance 

High 

resistance to 

heat 

[112-

115] 

PVP/PSF High- and 

in water 

Hydrophilic Good 

miscibility 

Good [116] 

 
Silica is a hydrophilic material and the use of silica nanospheres can 

improve the hydrophilicity of the membrane surface. It can be concluded that 

silica nanospheres clearly increased salt rejection and flux. In the study 

mentioned above, the water flux was elevated from 19.3 to 22.65 L/m
2
h 

compared with the non-existence of silica nanoparticles [44]. The layer 

presented a promotion in divalent or ionic selectivity in the separation 

process. This TFN membrane was gained in the softening of MgSO4 in an 

aqueous situation in another study [45]. 

Formation of appropriate sites on the nanofiltration membrane surface for 

binding TiO2 photo-catalyst and their performance and fouling-resistant 

capability has been studied before [41]. However, a new poly (vinyl alcohol) 

(PVA) with titanium dioxide (TiO2) composite has been prepared in the study 

by Pourjafar et al. They have used a novel cross-flow system for analyzing 

the performance of the membrane. Figure 10 shows the schematic of their 

system and the setup procedure that has been described in the references [46]. 

In this study, a very good dispersion of nanoparticles on the surface of the 

membrane has been achieved. The XRD, SEM and AFM analyses can 

confirm their good results. Figure 11 shows the SEM image of their 

membrane surface [47]. In another study, the antibacterial effect of TFN with 

the same nanoparticles of TiO2 has been studied by them. Figure 12 shows 

the demonstration that this membrane had the antibacterial properties [48]. 

An investigation on water treatment was done in 2013 by Zhang et al. 

that perused silver-PEGylated dendrimer nanocomposite as an anti-fouling 

agent for nanocomposite membranes. The nanocomposite of silver-

polyethylene glycol was availed on the surface of the TFN membrane to 

decrease the fouling of bacteria and also proteins in water purification. After 

utilization of this membrane in the project, important improvement in 

hydrophilicity was found and attachment of the bovine serum albumin (BSA) 

and E.coli obviously reduced alongside the fouling reduction up to 99.8% 

[49]. 

 

 
Fig. 10. Schematic of new cross-flow system for analyzing performance of TFN [47]. 

 

 

Fig. 11. Good dispersion of TiO2 nanoparticles on the surface of membrane [47]. 

 
Buonomenna studied the effect of nanoparticles on the surface of 

membranes in the recent decade and made a comparison between the 

application of nano composites in reverse osmosis (RO) and forward osmosis 

(FO) [50]. In 2013, Wu et al. improved the interfacial polymerization to 

optimize the multi-walled carbon nanotubes-polyester thin film coated with 

triethanol amine (TEOA) and trimesoyl chloride (TMC) on the base of the 

PSF support membrane. The results showed that an increase of MWNTs 

concentration in the aqueous phase up to 0.05 mg/ml caused an increase in 

water permeability and long term stability. To compare the two categories, 

classical TFC was manufactured and pure water flux and Na2SO4 rejection 

were studied on both TFN and TFC cases in the same situations. Despite the  

changes in  the salt rejection, the flux of pure water has been increased [51]. 

For improvement of selectivity and also permeability, Shen et al. used the 

interfacial polymerization method to coat PMMA-MWNTs. With this 

process, water flux increased perspicuity and salt rejection reached 99%. 

Grafting the MWNTs with poly (methyl methacrylate) PMMA obviously 

increases the hydrophobicity of the membrane [52]. 
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Fig. 12. Comparison of TiO2 antibacterial effects in TFN structure [48]. 

 
2.2.2. Forward osmosis (FO) 

 

A new membrane for dehydration of alcohol solutions in aqueous phase 

was prepared by Fathizadeh et al. [53]. The phase inversion method was used 

to synthesize a mPAN substrate layer and the polyamide active layer 

containing nano NaX zeolite was deposited on the porous sub-layer by the 

hydrothermal technique [54]. Nano NaX zeolite is a hydrophilic particle in a 

crystal size in a nanometer scale and thus, the hydrophilicity of the membrane 

increased with regards to the utilization of this material. The use of NaX 

zeolite caused the growth in roughness and for this reason, permeation was 

increased [32]. 

The water selectivity was influenced by increment of zeolite 

nanoparticles with the penetration of water inside the pores of the zeolite. 

However, isobutanol is unable to act like water so this kind of TFN 

membrane is perfect for dehydration of isobutanol-water mixture because of 

its high selectivity. It also has good performance in the separation of the 

ethanol-isobutanol blend (ethanol is similar to water) [53]. 

Kang et al. explained the influence of zeolite in TFN membranes again, 

but in this case the layer-by-layer assembly technique was considered. For 

this, negatively charged Lind type A (LTA) zeolite was sandwiched between 

two distinct polyelectrolyte layers. Negatively charged poly (acrylic acid) or 

PAA, positively charged polyethylenimine or PEI with LTA were provided 

by a trilayer via interaction of electrostatics. SEM showed that zeolite was 

better kept in the trilayer in comparison with the PAA and PEI bilayer, and 

this composite also generated a good roughness in addition to its perfect 

stability and thickness [30]. 

Daraei et al. also fabricated nanoclay/chitosan on the polyvinylidene 

fluoride (PVDF) substrate layer. Nanoclay has a very good adsorption 

capability and so it has a good performance in separations, and it can also 

cause interaction between the layers. The manufactured membrane was 

employed to study the removal of methylene blue from water [55]. 

 

2.2.3. Reverse osmosis (RO) 

 

In the last year (2015), a research was accomplished by Ghanbari et al. 

which studied the effect of using cyclohexane instead of n-hexane as the 

organic solvent to provide a high dispersion in halloysite nanotubes (HNTs) 

for water desalination on the PSF substrate. The results showed that some 

functions were increased such as hydrophilicity, solubility, diffusion and 

roughness. However, salt rejection is decreased from 93% to 78% in TFN 

membranes with HNTs [16, 56]. 

Another experiment was done to optimize TFC and make the novel TFN 

membranes by modified nanoparticles of mesoporous silica with the covalent 

bonding once more by Ghanbari et al. [57]. For that research, a mesoporous 

silica nanoparticle (mMSN) polyamide (PA) thin film was synthesized by 

interfacial polymerization of PIP and TMC on that substrate layer. At first 

mMSN and TMC were reacted, and then silica nanoparticles were linked with 

an active layer via covalent binding. After fabrication of the membrane, some 

experiments were done and the results explained that in the rejection of 

Na2SO4 mMSN membranes have two base characteristics: 1) mesostructured 

for better water flux and 2) the functional group caused better interaction with 

the polymer and thus prepared a very good anti-fouling ability [57]. 

Wu et al. scrutinized a new approach of TFN membranes generation. 

They studied some new nanomaterials in the thin layer to prevent the 

membrane from fouling with microbes and stop their growth on the surface of 

the membranes. For this reason, with a slow release of nano silvers with 

antimicrobial nano particles, the generation of bacteria was controlled. Nano 

zeolite was coated on the surface to provide a carrier for Ag to link via 

covalent binding after the amine group and nano zeolite linked and Ag
+ 

loaded on the surface. At about 7.2 mg/m
2
 loading of silver, a strong 

antimicrobial activity occurred. For water purification, this technique is 

simple and easy to barricade the activity of bacteria [58]. 

To make brackish water purify with nanoparticles, Dong et al. suggested 

utilization of NaY zeolite nanoparticles with a size smaller than 200nm in 

reverse osmosis membranes. Namvar-Mahboub et al. modified SiO2 on PEI as 

the organic solvent for nanofiltration (OSN) [59]. 

In other projects of our group, another nanoparticle was manufactured as 

solvent in nanofiltration. TiO2 was functionalized to coat on the active site of 

the membrane. SEM showed the multi-layer structure and different agents can 

bond on the surface covalently or physically. Some copolymers with excellent 

solubility in high polar solvents have been used in this work and a very good 

matrix on PSF has been achieved that is shown in Figure 13 [15]. 

Based on Lau’s review paper in 2012 and some other lectures which were 

overviewed [29], all the developments in recent years in thin film 

nanocomposite membranes were studied. There are two groups of amine 

monomers and acyl chloride monomers which are used in the fabrication of 

TFNs that are aggregated in Table 3. 

Generally, the best performance in purification and desalination is the 

property of TFNs. Nanoparticles can improve many thin film composition 

specifications such as productivity, selectivity, stability and fouling 

resistance, and this leads to the great development for the membrane industry 

from TFC to TFN [26, 36, 60-65]. 

 

 
Fig. 13. Ionic domain formation of SPESS copolymers in the PSF matrix. 

 

 

3. Additives 

 

In addition to two principal layers in TFN membranes, one more layer of 

additives regarding the condition and application of the membrane could be 

operational which is made of additives. On the other hand, additives can be 

used as the particle in the main structure of those two identified layers. 

Additives can improve the characterizations of the membrane like 

performances or porosity and also for stabilizing nanoparticles in the structure 

of the membrane additives could be used. In traditional filtrations without any 

nanoparticle or additive, the principal of operation was only the difference in 

size. However, in a new generation of membranes, some adsorbent or 

strengthener particles can be employed and this leads to the better membrane 

structure and performance. For instance, Voo et al. have studied the effect of 

additives to make epoxy TFN membranes flexible due to the poor resistance 

of epoxy systems to cracks and the need of flexibility in the operation. For 

that reason, flexibilizing resins (FR-1), polyol resins (FR-2), toughening 

resins (FR-3) synthetic diamond (SD) were investigated in varied traits of 

mechanical, thermos-mechanical and also thermal stability [66]. 

It was understood that degradation on the mechanical properties is 

decreased for FR-1 and FR-3 but no increase occurs for SD nanofillers. 

However, flexibility, stiffness and tensile strength are increased when SD 

nanofillers are utilized. 

In other research related to additives, four hydrophilic materials were 

observed and their influences on TFN membrane efficiency were compared 

by Zhao et al. The materials were added in m-Phenylenediamine (MPD) 
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solution to react with TMC in the structure of the sub-layer [67]. 

o-aminobenzoic acid-trimethylamine salt (o-ABA-TEA) which has a 

similar structure to MPD, influenced the water flux from 21.6 gfd to 36.7 gfd 

by an increase of 0 %wt to 2.45 %wt. The second one is m-aminobenzoic 

acid-trimethylamine salt (m-ABA-TEA), and has more similarity to MPD and 

could increase the flux from 21.6 gfd to 36.3 gfd. The third one 2-(2-

hydroxyethyl)pyridine which contains a reactive –oh group could modify the 

salt rejection by 98% and water flux of 40 gfd in optimum conditions. But the 

last one was 4-(2-hydroxyethyl) morpholine which modified the lower salt 

rejection and higher water flux. (97.6% rejection and 40.8 gfd flux) [67]. 

Faizur Rahman has experimented reverse osmosis membranes with and 

without additives, and for this reason four composites (antiscalants) were 

utilized, SHMP, STD100, STD101 and FM 101. STD composites are 

commercial additives and their benefits are demonstrated, FM 101 is also a 

better conventional additive which has defendable performance. In this 

experiment, temperature and pH were optimized at 50 °C and about 6.5 

sequences [68]. Another work prepared a bilayer of Ag as an additive to a thin 

film and responses were observed by Chapelle et al. [69]. The Ag ultra-thin 

bilayer led the project to a better gas selectivity and also sensitivity. 

 
Table 3. Popular monomers based on the Lau review paper [29]. 

Amine monomer Acyl chloride monomer 

m-Phenylenediamine (MPD) [24, 117-120] Trimesoyl chloride (TMC) [120-123] 

Piperazine (PIP) [41, 124, 125] 5-Isocyanatoisophthaloyl chloride (ICIC) 

[126] 

Triethanolamine (TEOA) [127, 128] om-Biphenyl tetraacyl chloride (om-

BTEC) [23] 

Sulfonated cardopoly (arylene ether 

sulfone) (SPES-NH2) [129] 

mm-Biphenyl tetraacyl chloride (mm-

BTEC) [23, 24] 

p-Phenylenediamine (PPD) [29, 38] Isophthaloyl chloride (IPC) [130, 131] 

3,5-Diamino-N-(4-aminophenyl) 

benzamide (DABA) [122, 132] 

Cyclohexane-1,3,5-tricarbonyl chloride 

(HTC) [133] 

Disulfonatedbis[4(3aminophenoxy)phenyl]

sulfone (S-BAPS) [134] 

op-Biphenyl tetraacyl chloride (op-BTEC) 

[23] 

Hexafluoroalcohol-mphenylenediamine 

(HFA-MPD) [27] 

Pyridine-2,4,6-tricarbonyl trichloride 

(PTC) [23] 

m-Phenylenediamine-4-methyl (MMPD) 

[135] 

5-Chloroformyloxyisophthaloyl chloride 

(CFIC) [122] 

1,3-Cyclohexanebis(methylamine) 

(CHMA) [29] 

 

Sulfonated poly(arylene ether sulfone) 

containing sulfonic acid and amino groups 

(SDADPS) [136] 

 

 

 

4. Nanoparticles 

 

The numbers of nanoparticles were observed in many researches as 

discussed formerly in this article. Two principal methods have been used in 

the literatures to add nanoparticles into the membrane structure as additive. 

First is solving the nanoparticles in the aqueous or organic solvents. In this 

procedure, the nanoparticles have been loaded on the membrane while the 

layer has been fabricated. However, the second one is the in situ method. In 

this method, nanoparticles will be formed in the membrane structure. For this 

purpose, they are mostly used for the formation of the metal nanoparticles, 

metal salts solved in the solvents and then the exclusive reducing agent filter 

to the membrane. After the reduction step occurred, the nanoparticles formed 

in the membrane [70]. 

 Here some other useful nanoparticles are studied, for instance the one 

step method of synthesis of Pt nanoparticles for fabrication of the SnO2 

nanocomposite thin film membranes were classified by Kim et al. [71]. In this 

research, with the formation of Pt nanoparticles, resistance was decreased due 

to the long time heating of the membrane to synthesize nanoparticles. 

However, optical and electrical properties were not changed. 

In one of the newest works of Liu et al. in 2015, a novel TFN membrane 

was prepared and the effects of SAPO-34 nanoparticles were studied. The 

substrate of this hallow fiber membrane was a dual-layer of PES/PVDF. The 

membrane showed a large nanoporosity and due to this porosity, high 

rejection and flux were achieved [72]. 

A new synthetic nanoparticle has been extracted from the Hibiscus 

subdariffa leaf in Bala et al. experiments for anti-bacterial usages. In the 

future it can be a good nanoparticle for the anti-fouling agent on the surface 

of membranes [73]. 

For the water purification, another work has been studied by Al-Hobaib 

et al. In this experiment, the nanoparticles of magnesium titanium oxide 

(MgTiO3) were used as a filler with different concentrations to achieve a 

better performance. Water flux and the salt rejection were observed and the 

TFN membrane showed a high performance in these two parameters. The 

permeability was increased from 26 to 44.6 L/m
2
 and rejection of about 98% 

was prepared with a low concentration of nanoparticles [74]. However, one of 

the useful nanoparticles as an anti-fouling agent is silver. The photo reduction 

and soft reduction methods were used to synthesize Ag nanoparticles by 

Wolosiuk et al. [75]. 4-mercaptopyridine was used as the probe molecule. Ag 

nanoparticles showed a stable performance on prohibition of bacterial growth. 

Another work also used Ag nanoparticles for bio-fouling mitigation [70]. 

Although the roughness, hydrophilicity and salt selectivity were not impacted, 

about 75 percent of live bacteria was attached to the surface. However, slight 

reduction in flux was observed. 

To increase the water flux in an experiment by Duan et al., a hydrophobic 

zeolite imidazolate framework-8 (ZIF-8) was employed as nanoparticle in the 

PA selective layer. The membrane including lab made nanoparticles showed a 

water permeate increase to 3.35 L/m
2
·h·bar [76].  

Generally, among methods of TFN membrane fabrication (i.e. interfacial 

polymerization, layer-by-layer modifications, UV grafting or UV 

photografting, electron beam irradiation and plasma treatment), interfacial 

polymerization is the best choice besides using additive or nanoparticle 

additives. In summary, some of the most important nanoparticles which have 

been used in the structure of TFN are prepared in Table 4 with limited details. 

Briefly, nanoparticles could improve many properties of membranes, for 

instance roughness, biofouling, water flux, permeability, salt rejection, 

porosity, stability and etc. One of the main characterizations in the membrane 

is the hydrophilicity that can be improved by the usage of nanoparticles. 

 

 

5. Applications 
 

According to the review article which was published recently by 

Mohammad et al., more than a quarter of published articles on the subject of 

TFC and TFN from 2008 are about applications of those membranes and also 

approximately twenty percent are about fabrication methods. Therefore, about 

half the published articles in this category is related to the methods and 

applications. Thus, the importance of the topic is represented. The most 

important matter in the issues is the concern of water purification and/or 

wastewater treatment with nanofiltration and its advances in desalinations 

[77]. 

Applications of TFN membranes are divided to several classes such as 

desalination as the most useful application, environmental applications, and 

utilizations in biotechnological fields as well as the food industry. 

 

5.1. Desalination 

 

Due to some problems such as fouling in the desalination process, 

industrial utilization of TFN membranes is in the early stage. However, 

researches about applications of TFN membranes especially for the 

desalination process is the main concentrate of scientists' society studies and 

also many achievements have be gained [17, 56, 78-81]. The future of these 

researches can be seen in the development of membranes for brackish water 

and seawater desalination usages [82]. 

 

5.2. Environment 

 

Worldwide primary concern nowadays is the treatment of wastewaters to 

generate high quality water via the usage of nanoparticles in the TFN 

membranes fabrication. The significant utilization of membranes for 

environmental applications is the separation of toxicant particles (i.e. arsenic) 

[83-85], salts (i.e. Na2SO4 and MgSO4) [86-88], proteins, nuclear or 

pharmaceutical wastes [89, 90], removal of organic pollutants (i.e. industrial 

by-products) and hormones from water and its purification, some at a bench 

scale and some others in commercial or plant scales. 

In comparison to other methods of wastewater treatment, for instance 

using activated sludge or microorganisms in biotechnology, the TFN 

membrane way of purification due to its high quality of products and lower 

operating cost can be more useful and reasonable. 
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5.3. Biotechnology and biochemical engineering 
 

According to the development of biotechnology and its entrance to other 

sciences, and the connection between biotechnology and engineering, 

utilization of membranes has increasingly grown in many fields of industry 

and many researches in laboratories. One example is the usage of TFN 

membranes to purify medicines and make biological products in high quality 

and purity. Plenty of perusals like the recovery of organic solvents are yet in 

laboratory scale but a bright future is considered for membranes 

modifications and also in the medical sciences [15, 26, 91]. 

 
Table 4. A brief explanation related to the some of most important nanoparticles. 

Nanoparticles Solubility 
Usage 

position 
Size Performance Ref. 

Silver (Ag) Soluble in 

water, 

acetone, 

ammonia, 

ether and 

insoluble 

in ethanol 

Thin 

film 

active 

layer 

20-131 nm Anti-

biofouling 

[137] 

Platinum (Pt) Insoluble 

in ether, 

dissolved 

in 

ammonia, 

HCL 

 60-120 nm Temperature 

resistance, 

antioxidants 

inhibitor 

[71, 

138] 

Titanium 

Dioxide 

(TiO2) 

Insoluble 

in water 

Coated 

on active 

site 

20 nm (in a 

study) 

Increase water 

flux, surface 

bonding 

[36, 

139] 

Magnesium 

Titanium 

Oxide 

(MgTiO3) 

Soluble in 

acid, 

ammonia 

and 

insoluble 

in alcohol 

Used as 

filler 

About 80 nm Better water 

flux, salt 

rejection and 

permeability 

[74] 

Silica 

Nanoparticles 

Solubility 

in water 

depends 

on 

crystalline 

form 

(poorly 

soluble) 

Thin 

film 

active 

layer 

About 100 

nm 

Improved 

hydrophilicity, 

increased 

rejection and 

water flux 

[14] 

Zeolite 

Nanoparticles 

Little 

known of 

zeolite 

solubility 

and it 

depends 

on many 

situations 

Substrate 

layer 

Smaller than 

200 nm 

Improved 

porosity, 

permeability 

and increased 

flux 

 

 
5.4. Food industry 

 

Due to the importance of quality in the food processes, utilization of TFN 

membranes for separation in this field has increased in recent years. Some 

operations have used membranes from past years such as beverage and dairy 

production. However, with the development of membranes and generation of 

novel and efficient TFNs, other food industries (i.e. juice and non-alcoholic 

drinks) are recruiting membranes nowadays. Separation of hazardous parts 

like cholesterol and keeping useful compositions like antioxidants is another 

fundamental concern of the food industry and it can be possible with 

membrane science.  Other functional operations of TFNs in the food industry 

are preservation of natural colors, separation of NaCl, keeping nutrients and 

an optimized amount of compositions in the food separation processes [92]. 

 

 

6. Conclusions 

 

Owing to the requirement of many industries and sciences for separation 

and production of high quality materials, a low cost, reliable and high yield 

method is needed and TFN membranes can prepare the perfect setting for 

these purposes. Membranes are very suitable due to their high selectivity and 

other exclusive characterizations, albeit many laboratory scale projects were 

not commercialized yet.  

With the help of nanotechnology, membrane science has introduced a 

novel gamut in science and technology. By using new nanoparticles and 

nanocomposites among the structure of membranes, the TFNs were born to 

help the separation and purification processes. In order to fabricate high 

efficiency thin film nanocomposites, many parameters namely increasing 

selectivity, permeability and porosity besides the reduction of fouling or 

improvement of salt rejection, need to be taken into account. In addition, 

many manners, theories and additive particles are also modified and chosen 

with regards to time and application. In conclusion and to the best of our 

knowledge, using TMC in fabrication of the base layer and the nanosilica in 

other parts are the most favorite particles so far. 

From the provided figures it can be obtained that many analyzing 

methods and devices have been employed to reach many characterizations of 

each membrane, for instance the very rough and dense films that were formed 

on the PSF or PES support layer could be seen by the usage of SEM or AFM 

analyses (some SEM and AFM analyses was shown before in this study). The 

high roughness and density increase the capacity of TFN for the water 

softening process. 

The interfacial polymerization method is commonly used to prepare a 

stable top layer on the PSF ultrafiltration support layer. In some cases, for 

improving the performance of membranes, surfactants (i.e. SDS) have been 

used to affect the morphology of TFN and get the high rejection or flux. 

In this process, high hydrophilicity can lead to the high performance in 

permeability of the membrane, so that many nanoparticles have been used to 

increase the hydrophilicity of the TFN surface. They can also make the 

membrane smoother and or decrease tendency and fouling. 

In addition to all the above, some disadvantages of this group of 

membranes might also be considered. For instance, at high pressure, the 

polyamide layer loses the fitting structure and the lower porosity may be 

achieved. Moreover, oxidation always treats these membranes. Therefore, it 

has a long way ahead of TFNs to finding a way to the industrial field from 

pilot or lab scale due to their high cost solvents and nanoparticles, and also 

the fabrication of this category of membrane needs high accuracy in timing 

and material purity. In this process, biofouling can greatly occur and leads to 

resistance to the water flow rate. Therefore, further studies in this field are 

undeniable. 
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