Electrospun Membranes for Desalination and Water/Wastewater Treatment: A Comprehensive Review

Document Type : Review Paper


1 Membrane Industry Development Institute

2 MPRL, AUT, Tehran, Iran

3 NUS, Singapore

4 CRANN Institute, Trinity College Dublin, Dublin 2, Ireland

5 School of Physics, Trinity College Dublin, Dublin-2, Ireland


Polymeric nanofbers, specifcally fabricated by electrospinning, offer viable means useful for a wide range of applications such as health, energy and environmental issues. However, among the mentioned sectors, desalination and water/wastewater treatment applications have been highlighted during the past decade. This article focuses on the present status and recent development of electrospun nanofbrous membranes and their potential impact in two major areas, i.e., desalination and water/wastewater treatment. Specifc applications for desalination and high-quality water/wastewater treatment, including pressure-driven and osmotic membrane processes (MF, UF, NF, FO, etc.), thermal-driven membrane processes, coalescing fltration and adsorptive application of nanofbers, are described. Also, benefts, limitations and challenges are discussed, comprehensively. Electrospun membranes can play a critical role in improving membrane-based desalination and water/wastewater treatment systems. These fltration elements with 3D inter-connected structures will be shown to have interesting and crucial advantages over conventional polymeric membranes in terms of performance, cost and energy savings. This article also highlights the prospects of electrospun membranes and specifcally provides the state-of-the-art applications in the water industry.

Graphical Abstract

Electrospun Membranes for Desalination and Water/Wastewater Treatment: A Comprehensive Review


• This article focuses on the present status and recent development of electrospun nanofbrous membranes
• Applications of elecrospun membranes for membrane processes (MF, UF, NF, FO and MD), coalescing fltration and adsorptive separation are reviewed
• Benefts, limitations and challenges of electrospun membranes are discussed
• This article also highlights the prospects of electrospun membranes, specifcally in the water industry


Main Subjects

[1] UN Water Report, “The United Nations World Water Development Report 2015”, (2015) (https://www.unesco-ihe.org/sites/default/files/wwdr_2015.pdf).
[2] J.R. Werber, C.O. Osuji, M. Elimelech, Materials for next-generation desalination and water purification membranes, Nature Rev. Mater. 16018 (2016) DOI: 10.1038/natrevmats.2016.18.
[3] CGW4U-A, World population: Changes and challenges (2007), (https://www.homeworkmarket.com/sites/default/files/cgw4ua_unit_1_lesson_02.pdf).
[5] M.M.A. Shirazi, A. Kargari A, Application of membrane distillation process for wastewater treatment: A review, J. Membr. Sci. Res. 1 (2015) 101-112.
[6] C. Sealy, Cleaning up water on the nanoscale, Nano Today 8 (2013) 337-338.
[7] Das R, Hamid SBA, Ali ME, Ismail AF, Annuar MSM, Ramakrishna S, Multifunctional carbon nanotubes in water treatment: The present, past and future, Desalination 354 (2014) 160-179.
[8] X. Wang, B.S. Hsiao, Electrospun nanofiber membranes, Current Opinion Chem. Eng. 12 (2016) 62-81.
[9] J. Theron, J.A. Walker, T.E. Cloete, Nanotechnology and water treatment: Applications and emerging opportunities, Critical Rev. Microbiol. 34 (2008) 43-69.
[10] X. Qu, J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res. 47 (2013) 3931-3946.
[11] W.E. Teo, S. Ramakrishna, A review on electrospinning design and nanofibre assembles, Nanotechnology 17 (2006) R89-R106.
[12] S. Subramanian, R. Seeram, New directions in nanofiltration applications-Are nanofibers the right materials as membranes in desalination?, Desalination 308 (2013) 198-208.
[13] L. Zhang, A. Aboagye, A. Kelkar, C. Lai, H. Fong, A review: carbon nanofibers from electrospun polyacrylonitrile and their applications, J. Mater. Sci. 49 (2014) 463-480.
[14] J.J. Doyle, S. Choudhari, S. Ramakrishna, RP. Babu, “Electrospun Nanomaterials: Biotechnology, Food, Water, Environment, and Energy,” Conference Papers in Materials Science, vol. 2013, Article ID 269313, 14 pages, 2013. doi:10.1155/2013/269313.
[15] N.M. Rodriguez, M.S. Kim, R.T.K. Baker, Carbon nanofibers: A unique catalyst support medium, J. Phys. Chem. 98 (1994) 13108-13111.
[16] A. Freton, I.S. Chronakis, Polymer nanofibers assembled by electrospinning, Current Opinion Colloid Interf. Sci. 8 (2003) 64-75.
[17] F.E. Ahmed, B.S. Lalia, R. Hashaikeh, A review on electrospinning for membrane fabrication: Challenges and applications, Desalination 356 (2015) 15-30.
[18] I. Sas, R.E. Gorga, J.A. Joines, K.A. Thoney, Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning, J. Polymer Sci. B: Polymer Phys. 50 (2012) 824-845.
[19] J.H. He, H.Y. Kong, R.R. Yang, H. Dou, N. Faraz, L. Wang, C. Feng C, Review on fiber morphology obtained by bubble electrospinning and blown bubble spinning, Thermal Sci. 16 (2012) 1263-1279.
[20] M.J.A. Shirazi, S. Bazgir, M.M.A. Shirazi, S. Ramakrishna, Coalescing filtration of oily wastewaters: characteristics and application of thermal treated electrospun polystyrene filters, Desal. Water Treat. 51 (2013) 5974-5986.
[21] J.D. Schiffman, C.L. Schauer, A review: Electrospinning of biopolymer nanofibers and their applications, Polymer Rev. 48 (2008) 317-352.
[22] H.U. Shin, Y. Li, A. Paynter, K. Nartetamrongsutt, G.G. Chase, Vertical rod method for electrospinning of polymer fibers, Polymer 65 (2015) 26-33.
[23] Y.A. Huang, N. Bu, Y. Duan, Y. Pan, H. Liu, Z. Yin, Y. Xiong, Electrohydrodynamic direct-writing, Nanoscale 5 (2013) 12007-12017.
[24] P. Kiselev, Rosell-Llompart, Highly aligned electrospun nanofibers by elimination of the whipping motion, J. Appl. Polymer Sci. 125 (2012) 2433-2441.
[25] C.L. Casper, J.S. Stephens, N.G. Tassi, D.B. Chase, J.F. Rabolt, Controlling surface morphology of electrospun polystyrene finers: Effect of humidity and molecular weight in the electrospinning process, Macromolecules 37 (2004) 573-578.
[26] T. Uyar, F. Besenbacher, Electrospinning of uniform polysturene fibers: The effect of solvent conductivity, Polymer 49 (2008) 5336-5343.
[27] M. Kang, R. Jung, H.S. Kim, H.J. Jin, Preparation of superhydrophobic polystyrene membranes by electrospinning, Colloid Surf. A: Physicochem. Eng. Aspects 313-314 (2008) 411-414.
[28] L. Wannatong, A. Sirivat, P. Supaphol, Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene, Polymer Int. 53 (2004) 1851-1859.
[29] T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham, L. Wannatong, M. Nithitanakul, C. Pattamaprom, P. Koombhongse, R. Rangkupan, P. Supaphol, Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers, European Polymer J. 41 (2005) 409-421.
[30] A. Koski, K. Yim, S. Shivkumar, Effect of molecular weight on fibrous PVA produced by electrospinning, Mater. Lett. 58 (2004) 439-497.
[31] S. Agrawal, A. Greiner, J.H. Wendorff, Functional materials by electrospinning of polymers, Prog. Polymer Sci. 38 (2013) 963-991.
[32] B. Guo, L. Glavas, A.C. Albertsson, Biodegradable and electrically conducting polymers for biomedical applications, Prog. Polymer Sci. 38 (2013) 1263-1286.
[33] Y. Liao, R. Wong, M. Tian, C. Qiu, A.G. Fane, Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation, J. Membr. Sci. 425-426 (2013) 30-39.
[34] X. Wang, B. Ding, G. Sun, M. Wang, J. Yu, Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets, Prog. Mater. Sci. 58 (2013) 1173-1243.
[35] H. Fashandi, M. Karimi, Pore formation in polystyrene fiber by superimposing temperature and relative humidity of electrospinning atmosphere, Polymer 53 (2012) 5832-5849.
[36] N. Bhardwaj, S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotechnol. Adv. 28 (2010) 325-347.
[37] G. Panthi, M. Park, H.Y. Kim, S.J. Park, Electrospun polymeric nanofibers encapsulated with nanostructured materials and their applications: A review, J. Ind. Eng. Chem. 24 (2015) 1-13.
[38] V. Aravindan, J. Sundaramurthy, P. Kumar, Y.S. Lee, S. Ramakrishna, S. Madhavi, Electrospun nanofibers: A prospective electro-active material for constructing high performance Li-ion batteries, Chem. Commun. 51 (2015) 2225-2234.
[39] N. Awang, A.F. Ismail, J. Jafar, T. Matsuura, H. Junoh, M.H.D. Othman, M.A. Rahman, Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell: A review, Reactive Functional Polymers 86 (2015) 248-258.
[40] R. Sarbatly, D. Krishnaiah, Z. Kamin, A review of polymer nanofibers by electrospinning and their application in oil-water separation for cleaning up marine oil spills, Marine Pollution Bulletin 106 (2016) 8-16.
[41] T. Matsuura, Progress in membrane science and technology for seawater desalination-a review, Desalination 134 (2001) 47-54.
[42] D. Rana, T. Matsuura, Surface modifications for antifouling membranes, Chem. Rev. 110 (2010) 2448-2471.
[43] A.G. Fane, C.J.D. Fell, A review of fouling and fouling control in ultrafiltration, Desalination 62 (1987) 117-136.
[44] S. Nakao, Determination of pore size and pore size distribution: 3. Filtration membranes, J. Membr. Sci. 96 (1994) 131-165.
[45] P.W. Gibson, H.L. Schreuder-Gibson, D. Rivin, Electrospun fiber mats: Transport properties, AIChE J. 45 (1999) 190-195.
[46] M.S. Khil, D. Cha, H.Y. Kim, I.S. Kim, N. Bhattarai, Electrospun nanofibrous polyurethane membrane as wound dressing, J. Biomed. Mater. Res. 67B (2003) 675-679.
[47] A. Hernandez, J.I. Calvo, P. Pradanos, F. Tejerina, Pore size distributions in microporous membranes. A critical analysis of the bubble point extended method, J. Membr. Sci. 112 (1996) 1-12.
[48] E. Jakobs, W.J. Koros, Ceramic membrane characterization via the bubble point technique, J. Membr. Sci. 124 (1997) 149-159.
[49] G. Riechelt G, Bubble point measurements on large areas of microporous membranes, J. Memb. Sci., 60 (1987) 253-259.
[50] J.I. Calvo, A. Hernandez, P. Pradanos, L. Martinez, W.R. Bowen, Pore size distributions in microporous membranes II. Bulk characterization of track-etched filters by air porometry and mercury porosimetry, J. Colloid Interf. Sci., 176 (1995) 467-478.
[51] A. Hernandez, J.I. Calvo, P. Pradanos, F. Tejerina, Pore size distributions of track-etched membranes; comparison of surface and bulk porosities, Colloid Surf A: Physicochem. Eng. Aspects, 138 (1998) 391-401.
[52] M. Khayet, A. Velazquez, J.I. Mengual, Modeling mass transport through a porous partition: Effect of pore size distribution, J. Non-Equilibrium Thermodynamics, 29 (2004) 279-299.
[53] X.L. Wang, W.J. Shang, D.X. Wang, L. Wu, C.H. Tu, Characterization and applications of nanofiltration membranes: State of the art, Desalination 236 (2009c) 316-326.
[54] S. Naseri Rad, M.M.A. Shirazi, A. Kargari, R. Marzban, Application of membrane separation technology in downstream processing of Bacillus thuringiensis biopesticide: A review, J. Membr. Sci. Res. 2 (2016) 66-77.
[55] M.M.A. Shirazi, A. Kargari, M. Tabatabaei, Evaluation of commercial PTFE membranes in desalination by direct contact membrane distillation, Chem. Eng. Proc.: Process Intensif. 76 (2014) 16-25.
[56] E. Mirtalebi, M.M.A. Shirazi, A. Kargari, M. Tabatabaei, S. Ramakrishna, Assessment of atomic force and electron microscopes for characterization of commercial and electrospun nylon membranes for coke removal from wastewater, Desal. Water Treat. (2014) DOI: 10.1080/19443994.2013.821036.
[57] Y. Mansourpanah, E.M. Habili, Investigation and characterization of TiO2-TFC nanocomposite membrane preparation and UV studies, J. Membr. Sci. Res. 1 (2015) 26-33.
[58] Z.A. Tarsa, S.A.A. Hedayat, M. Rahbari-Sisakht, Fabrication and characterization of polyetherimide hollow fiber membrane contactor for carbon dioxide stripping from monoethanolamine solution, J. Membr. Sci. Res. 1 (2015) 118-123.
[59] L. Yan, Y.S. Li, C.B. Xiang, S. Xianda, Effect of nanosized Al2O3-particle addition on PVDF ultrafiltration membrane performance, J. Membr. Sci. 276 (2006) 162-167.
[60] X. Cao, J. Ma, X. Shi, Z. Ren, Effect of TiO2 nanoparticle size on the performance of PVDF membrane, Appl. Surface Sci. 253 (2006) 2003-2010.
[61] M.M.A. Shirazi, A. Kargari, M. Tabatabaei, A.F. Ismail, T. Matsuura, Assessment of atomic force microscopy for characterization of PTFE membranes for membrane distillation (MD) process, Desal. Water Treat. 54 (2015) 295-304.
[62] D. Johnson, N. Hilal, Characterization and quantification of membrane surface properties using atomic force microscopy: A comprehensive review, Desalination 356 (2015) 149-164.
[63] N. Hilal, H. Al-Zoubi, N.A. Darwish, A.W. Mohammad, M. Abu Arabi, A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modeling, and atomic force microscopy, Desalination 170 (2004) 281-308.
[64] L.Y. Ng, A.W. Mohammad, C.Y. Ng, A review on nanofiltration membrane fabrication and modification using polyelectrolytes: Effective ways to develop membrane selective barriers and rejection capability, Adv. Colloid Interf. Sci. 197-198 (2013) 85-107.
[65] M.M.A. Shirazi, D. Bastani, A. Kargari, M. Tabatabaei, Characterization of polymeric membranes for membrane distillation using atomic force microscopy, Desal. Water Treat. 51 (2013) 6003-6008.
[66] V. Kochkodan, D.J. Johnson, N. Hilal, polymeric membranes: Surface modification for minimizing (bio)colloidal fouling, Adv. Colloid Interf. Sci. 206 (2014) 116-140.
[67] M.C. Garcia-Payo, M.A. Izquierdo-Gil, C. Fernandez-Pineda, Wetting study of hydrophobic membranes via liquid entry pressure measurements with aqueous alcohol solutions, J. Colloid Interf. Sci., 230 (2000) 420-431.
[68] K. He, H.J. Hwang, I.Sh. Moon, Air gap membrane distillation on the different types of membrane, Korean J. Chem. Eng., 28 (2011) 770-777.
[69] C. Zhao, J. Xue, F. Ran, S. Sun, Modification of polyethersulfone membranes-A review of methods, Prog. Mater. Sci. 58 (2013) 76-150.
[70] V. Kochkodan, N. Hilal, A comprehensive review on surface modified polymer membranes for biofouling mitigation, Desalination 356 (2015) 187-207.
[71] C. Feng, K.C. Khulbe, T. Matsuura, R. Gopal, S. Kaur, S. Ramakrishna, M. Khayet, Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane, J. Membr. Sci. 311 (2008) 1-6.
[72] M.M.A. Shirazi, A. Kargari, A.F. Ismail, T. Matsuura, Computational fluid dynamic (CFD) opportunities applied to the membrane distillation process: State-of-the-art and perspectives, Desalination 377 (2016) 73-90.
[73] B.S. Lalia, V. Kochkodan, R. Hashaikeh, N. Hilal, A review on membrane fabrication: Structure, properties and performance relationship, Desalination 326 (2013) 77-95.
[74] M. Takht Ravanchi, T. Kaghazchi, A. Kargari, Application of membrane separation processes in petrochemical industry: a review, Desalination 235 (2009) 199-244.
[75] S.A.A.N. Nasreen, S. Sundarrajan, S.A.S. Nizar, R. Balamurugan, S. Ramakrishna, Advancement in electrospun nanofibrous membranes midifications and their application in water treatment, Membranes 3 (2013) 266-284.
[76] H. Matsumoto, A. Tanioka, Functionality in electrospun nanofibrous membranes based on fiber’s size, surface area, and molecular orientation, Membranes 1 (2011) 249-264.
[77] M.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies, Energy Environ. Sci. 4 (2011) 1946-1971.
[78] W.J. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J.P. Chen, A.F. Ismail, A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches, Water Res. 80 (2015) 306-324.
[79] C. Feng, K.C. Khulbe, T. Matsuura, R. Farnood, A.F. Ismail, Recent progress in zeolite/zeotype membranes, J. Membr. Sci. Res. 1 (2015) 49-72.
[80] S. Ramakrishna, M.M.A. Shirazi, Electrospun membranes: Next generation membranes for desalination and water/wastewater treatment, J. Membr. Sci. Res. 1 (2015) 46-47.
[81] S.S. Ray, S.S. Chen, C.W. Li, N.C. Nguyen, H.T. Nguyen, A comprehensive review: electrospinning technique for fabrication and surface modification of membranes for water treatment application, RSC Adv. 6 (2016) 85495-85514.
[82] W. Ma, Q. Zhang, D. Hua, R. Xiong, J. Zhao, W. Rao, Sh. Huang, X. Zhan, F. Chen, Ch. Huang, Electrospun fibers for oil-water separation, RSC Adv. 6 (2016) 12868-12884.
[83] J.F. Kim, J.H. Kim, Y.M. Lee, E. Drioli, Thermally indiced phase separation and electrospinning methods for emerging membrane applications: A review, AIChE J. 62 (2016) 461-490.
[84] L.D. Tijing, J.S. Choi, S. Lee, S.H. Kim, H.K. Shon, Recent progress of membrane distillation using electrospun nanofibrous membrane, J. Membr. Sci. 453 (2014) 435-462.
[85] H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy Environ. Sci. 7 (2014) 3857-3886.
[86] G. Kang, Y. Cao, Application and modification of poly(vinylidene fluoride) (PVDF) membranes-A review, J. Membr. Sci. 463 (2014) 145-165.
[87] S. Kaur, S. Sundarrajan, D. Rana, R. Sridhar, R. Gopal, T. Matsuura, S. Ramakrishna, Review: the characterization of electrospun nanofibrous liquid filtration membranes, J. Mater. Sci. 49 (2014) 6143-6159.
[88] C. Feng, K.C. Khulbe, T. Matsuura, S. Tabe, A.F. Ismail, Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment, Sep. Purif. Technol. 102 (2013) 118-135.
[89] L. Persano, A. Camposeo, C. Tekmen, D. Pisignano, Industrial upscaling of electrospinning and applications of polymer nanofibers: A review, Macromolecul. Mater. Eng. 298 (2013) 504-520.
[90] S.K. Nataraj, K.S. Yang, T.M. Aminabhavi, Polyacrylonitrile-based nanofibers-A state-of-the-art review, Prog. Polymer Sci. 37 (2012) 487-513.
[91] Van Reis R, Zydney A, Membrane separations in biotechnology, Current Opinion Biotechnol. 12 (2001) 208-211.
[92] Van der Bruggen B, C. Vandecasteele, T. Van Gestel, W. Doyen, R. Leysen, A review of pressure-driven membrane processes in wastewater treatment and drinking water production, AIChE J. 22 (2003) 46-56.
[93] M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature 452 (2008) 301-310.
[94] R.P. Schwarzenbach RP, T. Egli, T.B. Hofstetter, U. von Gunten, B. Wehrli, Global water pollution and human health, Annual Rev. Environ. Resource 35 (2010) 109-136.
[95] M.S. Islam, J.R. McCutcheon, M.S. Rahaman, A high flux polyvinyl acetate-coated electrospun nylon 6/SiO2 composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance, J. Membr. Sci. 537 (2017) 297-309.
[96] Z. Wang, C. Crandall, R. Sahadevan, T.J. Menkhaus, , H. Fong, Microfiltration performance of electrospun nanofiber membranes with varied fiber diameters and different membrane porosities and thicknesses, Polymer 114 (2017) 64-72.
[97] T.C. Mokhena, A.S. Luyt, Development of multifunctional nano/ultrafiltration membrane based on a chitosan thin film on alginate electrospun nanofibers, J. Cleaner Production 156 (2017) 470-479.
[98] K.M. Dobosz, C.A. Kuo-Leblanc, T.J. Martin, J.D. Schiffman, Ultrafiltration membranes enhanced with electrospun nanofibers exhibit improved flux and fouling resistance, Ind. Eng. Chem. Res. 56 (2017) 5724-5733.
[99] M. Tian, Y.N. Wang, R. Wang, A.G. Fane, Synthesis and chacterization of thin film nanocomposite forward osmosis membranes supported by silica nanoparticle incorporated nanofibrous substrate, Desalination 401 (2017) 142-150.
[100] S. Khezli, M. Zandi, J. Barzin, Fabrication of electrospun nanocomposite polyethersulfone membrane for microfiltration, Polymer Bullet. 73 (2016) 2265-2286.
[101] Z. Li, W. Kang, H. Zhao, M. Hu, N. Wei, J. Qiu, B. Cheng, A novel polyvinylidene fluoride tree-like nanofiber membrane for microfiltration, Nanomater. 6 (2016) 1-11 (doi:10.3390/nano6080152).
[102] S.M.S. Shahabadi, S.A. Mousavi, D. Bastani, High flux electrospun nanofiberous membrane: Preparation by statistical approach, characterization, and microfiltration assessment, J. Taiwan Ins. Chem. Eng. 59 (2016) 474-483.
[103] N. Daels, L. Harinck, A. Goethals, K. De Clerck, S.W.H. Van Hulle, Structure changes and water filtration properties of electrospun polyamide nanofibre membranes, Water Sci. Technol. 73 (2016) 1920-1926.
[104] Z. Zhou, W. Lin, X.F. Wu, Electrospinning ultrathin continues cellulose acetate fibers for high-flux water filtration, Colloid Surfaces A: Physicochem. Eng. Aspects 494 (2016) 21-29.
[105] F. Hejazi, S.M. Mousavi, Electrospun nanofibrous composite membranes of chitosan/polyvinyl alcohol-polyacrylonitrile: preparation, characterization and performance, Desal. Water Treat. 57 (2016) 1959-1966.
[106] V.A. Ganesh, A.S. Ranganath, A. Baji, H.C. Wong, H.K. Raut, R. Sahay, S. Ramakrishna, Electrospun differential wetting membranes for efficient oil-water separation, Macromol. Mater. Eng. 301 (2016) 812-817.
[107] J. Yu, Y.G. Kim, D.Y. Kim, S. Lee, H.I. Joh, S.M. Jo, Super high flux microfiltration based on electrospun nanofibrous m-Aramid membranes for water treatment, Macromol. Res. 23 (2015) 601-606.
[108] M. Obaid, N.A.M. Barakat, O.A. Fadali, M. Motlak, A.A. Almajid, K.A. Khalil, Effective and reusable oil-water separation membranes based on modified polysulfone electrospun nanofiber mats, Chem. Eng. J. 259 (2015) 449-456.
[109] N.N. Bui, M.L. Lind, E.M.V. Hoek, J.R. McCutcheon, Electrospun nanofiber supported thin film composite membranes for engineered osmosis, J. Membr. Sci. 385-386 (2011) 10-19.
[110] N.N. Bui, J.R. McCutcheon, Nanoparticle-embeded nanofibers in highly permselective thin-film nanocomposite membranes for forward osmosis, J. Membr. Sci. 518 (2016) 338-346.
[111] L. Huang, J.T. Arena, J.R. McCutcheon, Surface modified PVDF nanofiber supported thin film composite membranes for forward osmosis, J. Membr. Sci. 499 (2016) 352-360.
[112] R.S. Barhate, C.K. Loong, S. Ramakrishna, Preparation and characterization of nanofibrous filtering media, J. Membr. Sci. 283 (2006) 209-218.
[113] R. Gopal, S. Kaur, Z. Ma, C. Chan, S. Ramakrishna, T. Matsuura, Electrospun nanfibrous filtration membrane, J. Membr. Sci. 281 (2006) 581-586.
[114] R. Gopal, S. Kaur, C.Y. Feng, C. Chan, S. Ramakrishna, S. Tabe, T. Matsuura, Electrospun nnaofibrous polysulfone membranes as pre-filters: Particle removal, J. Membr. Sci. 289 (2007) 210-219.
[115] J.A. Bhushani, C. Anandharamakrishnan, Electrospinning and electrospraying techniques: Potential food based applications, Trends Food Sci. Technol. 38 (2014) 21-33.
[116] B. Veleirinho, J.A. Lopes-da-Silva, Application of electrospun poly(ethylene terephthalate) nanofiber mat to apple juice clarification, Process Biochem. 44 (2009) 353-356.
[117] Fuenmayor CA, S.M. Lemma, S. Mannino, T. Mimmo, M. Scampicchio, Filtration of apple juice by nylone nanofibrous membranes, J. Food Eng. 122 (2014) 110-116.
[118] R. Wang, Y. Liu, B. Li, B.S. Hsiao, B. Chu, Electrospun nanofibrous membranes for high flux microfiltration, J. Membr. Sci. 392-393 (2012) 167-174.
[119] Acatay K, E. Simsek, C. Ow-Yang, Y.Z. Menceloglu, Tunable superhydrophobically stable polymeric surfaces by electrospinning, Angew. Chem. Int. Ed. 43 (2004) 5210-5213.
[120] C. Boo, J. Lee, M. Elimelech, Engineering surface energy and nanostructure of microporous films for expanded membrane distillation applications, Environ. Sci. Technol. 50 (2016) 8112-8119.
[121] S. Kaur, D. Rana, T. Matsuura, S. Sundarrajan, S. Ramakrishna, Preparation and characterization of surface modified electrospun membranes for higher filtration flux, J. Membr. Sci. 390-391 (2012) 235-242.
[122] M.M.A. Shirazi, A. Kargari, S. Bazgir, M. Tabatabaei, M.J.A. Shirazi, M.S. Abdullah, T. Matsuura, A.F. Ismail, Characterization of electrospun polystyrene membrane for treatment of biodiesel’s water-washing effluent using atomic force microscopy, Desalination 329 (2013) 1-8.
[123] S. Kaur, S. Sundarrajan, D. Rana, T. Matsuura, S. Ramakrishna, Influence of electrospun fiber size on the separation efficiency of thin film nanofiltration composite membrane, J. Membr. Sci. 392-393 (2012) 101-111.
[124] H. You, X. Li, Y. Yang, B. Wang, Z. Li, X. Wang, M. Zhu, B.S. Hsiao, High flux low pressure thin film nanocomposite ultrafiltraion membranes based on nanofibrous substrates, Sep. Purif. Technol. 108 (2013) 143-151.
[125] R. Marzban, F. Saberi, M.M.A. Shirazi, Separation of Bacillus thuringiensis from fermentation broth using microfiltration: Optimization approach, Res. J. Biotechnol. 9 (2014) 33-37.
[126] M.M.A. Shirazi, A. Kargari, D. Bastani, L. Fatehi, Production of drinking water from seawater using membrane distillation (MD) alternative: direct contact MD and sweeping gas MD approaches, Desal. Water Treat. 52 (2014) 2372-2381.
[127] M.M.A. Shirazi, A. Kargari, M. Tabatabaei, Sweeping gas membrane distillation (SGMD) as an alternative for integration of bioethanol processing: study on a commercial membrane and operating parameters, Chem. Eng. Communic. (2014) in press.
[128] M.M.A. Shirazi, A. Kargari, M. Tabatabaei, A.F. Ismail, T. Matsuura, Concentration of glycerol from dilute glycerol wastewater using sweeping gas membrane distillation, Chem. Eng. Proc.: Process Intensif. 78 (2014) 58-66.
[129] A. Kargari, M.M.A. Shirazi, Water desalination: Solar-assisted membrane distillation, in: Encyclopedia of Energy Engineering and Technology (2nd Ed.), Taylor and Francis (2014), DOI: 10.1081/E-EEE2-120051388.
[130] A.T. Servi, J. Kharraz, D. Klee, K. Notarangelo, B. Eyob, E. Guillen-Burrieza, A. Liu, H.A. Arafat, K.K. Gleason, A systematic study of the impact of hydrophobicity on the wetting of MD membranes, J. Membr. Sci. 520 (2016) 850-859.
[131] M. Essalhi, M. Khayet, Self-sustained webs of polyvinylidene fluoride electrospun nanofibers at different electrospinning times: 1. Desalination by direct contact membrane distillation, J. Membr. Sci. 433 (2013) 167-179.
[132] L. Francis, N. Ghaffour, A. Alsaadi, S. Nunes, G. Amy, PVDF hollow fiber and nanofiber membranes for fresh water reclamation using membrane distillation, J. Membr. Sci. 49 (2014) 2045-2053.
[133] X. Li, C. Wang, Y. Yang, X. Wang, M. Zhu, B.S. Hsiao, Dual-biomimetic superhydrophobic elecyrospun polystyrene nanofibrous membrane for membrane distillation, ACS Appl. Mater. Interfaces 6 (2014) 2423-2430.
[134] Y. Liao, C.H. Loh, R. Wang, A.G. Fane, Electrospun Super hydrophobic Membranes with unique structures for membrane distillation, ACS Appl. Mater. Interfaces 6 (2014) 16035-16048.
[135] LD. Tijing, Y.C. Woo, W.G. Shim, T. He, J.S. Choi, S.H. Kim, H.K. Shon, Superhydrophobic nanofiber membrane containing carbon nanotubes for high-performance direct contact membrane distillation, J. Membr. Sci. 502 (2016b) 158-170.
[136] H. Ke, E. Feldman, P. Guzman, J. Cole, Q. Wei, B. Chu, A. Alkhudhiri, R. Alrasheed, B.S. Hsiao, Electrospun polystyrene nanofibrous membranes for direct contact membrane distillation, J. Membr. Sci. 515 (2016) 86-97.
[137] M. Yao, Y.C. Woo, L.D. Tijing, W.G. Shim, J.S. Choi, S.H. Kim, H.K. Shon, Effect of heat-press conditions on electrospun membranes for desalination by direct contact membrane distillation, Desalination 378 (2016) 80-91.
[138] R. Moradi, J. Karimi-Sabet, M. Shariaty-Niassar, Y. Amini, Air gap membrane distillation for enrichement of H218O isotopomers in natural water using poly(vinylidene fluoride) nanofibrous membrane, Chem. Eng. Proc.: Process Intensif. 100 (2016) 26-36.
[139] E.J. Lee, A.K. An, T. He, Y.C. Woo, H.K. Shon, Electrospun nanofiber membranes incorporating fluorosilane-coated TiO2 nanocoposite for direct contact membrane distillation, J. Membr. Sci. 520 (2016) 145-154.
[140] F. Guo F, A. Servi, A. Liu, K.K. Gleason, G.C. Rutledge, Desalination by membrane distillation using electrospun polyamide fiber membranes with surface fluorination by chemical vapor deposition, ACS Appl. Mater Interfaces 7 (2015) 8225-8232.
[141] X. Li, X. Yu, C. Cheng, L. Deng, M. Wang, X. Wang, Electrospun superhydrophobic organic/inorganic composite nanofibrous membranes for membrane distillation, ACS Appl. Mater. Interfaces 7 (2015) 21919-21930.
[142] Y.C. Woo, L.D. Tijing, M.J. Park, M. Yao, J.S. Choi, S. Lee, S.H. Kim, K.J. An, H.K. Shon, Electrospun dual-layer nonwoven membrane for desalination by air gap membrane distillation, Desalination (2015) in press (http://dx.doi.org/10.1016/j.desal.2015.09.009).
[143] L.H. Min, Z.H. Yuan, L.U. Zhong, Q. Liu, R. Wu, Y.M. Zheng, Preparation of chitosan based electrospun nanofiber membrane and its adsorptive removal of arsenate from aqueous solution, Chemical Engineering Journal, 267 (2015) 132-141.
[144] H. Wu, J. Kong, X. Yao, C. Zhao, Y. Dong, X. Lu, Polydopamine-assisted attachment of β-cyclodextrin on porous electrospun fibers for water purification under highly basic condition, Chemical Engineering Journal, Volume 270 (2015) 101-109.
[145] V. Vinod, T. Padil, M. Černík, Poly (vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au, Ag, Pt, CuO and Fe3O4) from aqueous solutions, Journal of Hazardous Materials, 287 (2015)102-110.
[146] Xie S, Liu X, Zhang B, Ma H, Ling C, Yu M, Li L, Li J, Electrospun nanofibrous adsorbents for uranium extraction from seawater, J. Mater. Chem. A 3 (2015) 2552-2558.
[147] B.H. Diya’uddeen, W.M.A.W. Daud, A.R.A. Aziz, Treatment technologies for petroleum refinery effluents: A review, Process safety Environ. Protect. 89 (2011) 95-105.
[148] A. Moslehyani, M. Mobaraki, T. Matsuura, A.F. Ismail, M.H.D. Othman, M.N.K. Chowdhury, Novel green hybrid processes for oily water photooxidation  and purification of from merchant ship, Desalination 391 (2016) 98-104.
[149] M.M.A. Shirazi, A. Kargari, M. Tabatabaei, M. Akia, M. Barkhi, M.J.A. Shirazi, Acceleration of biodiesel-glycerol decantation through NaCl-assisted gravitational settling: A strategy to economize biodiesel production, Bioresource Technol. 134 (2013) 401-406.