
128

Journal of Membrane Science & Research

H I G H L I G H T S

A R T I C L E  I N F O G R A P H I C A L  A B S T R A C T

A B S T R A C T

On the Origin of the Membrane Potential Arising Across Densely Charged Ion Exchange 
Membranes: How Well Does the Teorell-Meyer-Sievers Theory Work?                                                

A.H. Galama1,2, J.W. Post1, H.V.M. Hamelers1, V.V. Nikonenko3, P.M. Biesheuvel*1,4

* Corresponding author at: Tel: +31 (0)58 284 3000, Fax: +31 (0)58 284 3001

Received 2014-11-03
Revised 2015-01-15
Accepted 2015-01-15
Available online 2015-01-15

A difference in salt concentration in two solutions separated by a membrane leads to an electrical potential difference across the membrane, also without applied current. A literature 
study is presented on proposed theories for the origin of this membrane potential (ϕm). The most well-known theoretical description is Teorell-Meyer-Sievers (TMS) theory, which 
we analyze and extend. Experimental data for ϕm were obtained using a cation exchange membrane (CMX, Neosepta) and NaCl solutions (salt concentration from 1 mM to 5 M). 
Deviations between theory and experiments are observed, especially at larger salt concentration differences across the membrane. At a certain salt concentration ratio, a maximum in 
ϕm is found, not predicted by the TMS theory. Before the maximum, TMS theory can be used as a good estimate of ϕm though it overestimates the actual value. To improve the theory, 
various corrections to TMS theory were considered: A) Using ion activities instead of ionic concentration in the external solutions leads to an improved prediction; B) Inhomogeneous 
distribution of the membrane fixed charge has no effect on ϕm; C) Consideration of stagnant diffusion layers on each side of the membrane can have a large effect on ϕm; D) Reducing 
the average value of the fixed membrane charge density can also largely affect ϕm; E) Allowing for water transport in the theory has a small effect; F) Considering differences in ionic 
mobility between co-ions and counterions in the membrane affects ϕm significantly. Modifications C) and F) may help to explain the observed maximum in ϕm.
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• The origin of the membrane potential across ion exchange membranes (IEMs) is discussed
• At large concentration differences, Teorell-Meyer-Sievers (TMS) theory deviates from the data
• No single assumption in the TMS theory can by itself account for the deviation
• For highly charged IEMs the membrane potential can go through a maximum
• Presence of a maximum in the potential depends on the concentration ratio

referred to as the open circuit voltage (OCV), the reversible potential, the 
concentration potential, or by the more general term of electromotive force 
(emf). This ‘reversible’ potential determines the minimum energy that is 
required to transport charge, as for example in the ED process [1]. Vice versa, 

1. Introduction
             
   Whenever there is a salt concentration difference over the membranes of, 
for instance, an electrodialysis (ED) stack, an electrical potential (or voltage) 
can be measured. In the absence of a current, this membrane potential is also 
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it is also a measure of the maximum amount of energy that can be recovered 
in a process such as reversed electrodialysis [2,3], or during the energy 
recovery step in membrane capacitive deionization [4,5]. Recently the 
membrane potential of living cells was identified as a key indicator of normal 
cell growth, and changes in the membrane potential to be related to 
carcinogenesis [6-8]. 

The phenomenon of the membrane potential at zero current conditions is 
intriguing and has fascinated many scientists for more than a century. Already 
in 1890, Wilhelm Ostwald [9] sketched the situation of two electrolyte 
solutions separated by a semipermeable membrane and drew attention to the 
(electrical) effects in these kinds of systems. Two decades later (1911), 
Frederick Donnan described the equilibrium of ions between two phases, 
separated by a semipermeable membrane, of which one phase contains a fixed 
charge (non-permeating species) [10]. Both these works became very 
important in the development of theories to explain the membrane potential 
that arises over biological membranes or artificial ion exchange membranes 
(IEMs). 

In our present work we discuss the assumptions underlying the theory for 
the membrane potential describing the phenomena occurring when a 
semipermeable membrane separates two electrolyte solutions differing in salt 
concentration. We will restrict ourselves in this work to theory and data 
applying to the situation where the electrical current is zero. The most 
fundamental and well-known theoretical approach to describe the membrane 
potential is the Teorell-Meyer-Sievers (TMS) theory [11,12]. Using this 
theory the membrane potential can be well predicted within certain ranges of 
the salt concentration. However, as we will show, for outside this range, the 
TMS theory markedly deviates from the experimental data. In the present 
work, we thoroughly analyze the TMS theory and develop various extensions 
of TMS theory to better describe experimental data for the membrane 
potential. We discuss in which way each extension influences the theoretical 
results. 

 
 

2. Theory 
In this section we describe the basic theory of ion transport in ion 

exchange membranes. We show how under zero current conditions a 
difference in chemical potential across an IEM induces the development of an 
electric potential difference. We first neglect a contribution by convection 
(due to water flow) on ion transport. The development of the TMS theory 
from the ion transport equations will be clearly described. Also the extension 
of the TMS theory to the Space Charge Model (SCM) will be discussed 
briefly. 

 
2.1. Potentials and transport 

Transport of ions through a membrane can take place by migration, 
diffusion and convection. Migration is the transport of ions caused by an 
electric potential gradient ( φ∇ ), diffusion is the movement of ions caused by 

a chemical potential gradient ( µ∇ ), and convection is the transport of ions 

due to a pressure gradient ( P∇ ). These three different gradients act as driving 
forces for transport and simultaneously result in i) electrical current, ii) ionic 
flow, and iii) fluid flow  [13-15]. These three fluxes are interrelated, and to 
predict the flux of a certain ionic species, all three forces acting on the ions 
should be taken into account simultaneously. 

In the simplest 1:1 salt solution (e.g., NaCl) two ions are present and as 
such two electrochemical potential gradients should be considered. In 
solutions with many ionic species, e.g. seawater, the electrochemical potential 
can be calculated for all individual ionic species, as shown by Leyendekkers 
[16] and Whitfield [17]. Due to the combination of different gradients acting 
on the ions in solutions, it is not obvious what will be the direction and 
velocity of the ionic fluxes. Even without an applied electrical current and 
applied pressure, it is possible that ions are transported through the membrane 
against their own chemical potential gradient, a phenomenon known as uphill 
ion transport [15,18,19]. 

In the ED process [20,21], the largest driving force for transmembrane 
ionic transport is in most cases the applied electrical potential difference. In 
ED, a dilute and concentrate stream are formed. The concentration difference 
between these two streams can be large, and a large difference in chemical 
potential, ∆µ, can therefore arise during the process. This increasing ∆µ 
results in an increasing driving force for ion transport in opposite direction to 

the electric driving force, which leads to a decrease of the ion flux. This 
decrease of the ion flux is sometimes referred to as “back diffusion” of ions. 
Convective ion transport through IEMs is usually assumed to be negligible 
and is often left out of the ion transport equations [22-24]. 

   To describe ion transport, the chemical potential, µ i (J/mol), and the 
electric potential, ϕ (V), are combined in the electrochemical potential, 

iµ~  

(J/mol), which is calculated as 
 

φµφµµ FzcRTFz iiiiii ++=+= ln~ 0

                                                        (1) 
 

where zi is the ion valence (-), F the Faraday constant (C/mol), R the gas 
constant (J/mol K), T temperature (K), and ci the ion concentration 
(mol/m3=mM). For now, thermodynamic non-idealities are not discussed [25-
27]. According to Donnan equilibrium, two phases in contact with each other 
eventually will have the same electrochemical potential [10,28]. The electric 
potential developing over an interface (with side L and side R) for a single 
solute solution can then be obtained according to the balance 
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which can be simplified to 
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and rewritten to 
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where VT is the thermal voltage, defined as VT=RT/F. Eq. (4) is the well-
known Nernst equation (for general cases and for an electrode-solution 
interface), or Donnan relation (for a solution-membrane interface). This 
equation is often used to estimate the electric potential over the membrane in 
the absence of a current, as it gives the theoretically maximum membrane 
potential, ϕmax [29,30]. In biological cells, an unbalanced situation between 
the internal and the external solution is often maintained by ion pumps, and 
the resulting membrane potential is then known as the resting membrane 
potential, also described by Eq. (4). 

Eqs. (1)-(4) show that the measured electrical potential results from the 
electrochemical potential gradient, µ~∇ , which is present in a defined system. 

When differentiating Eq. (1) in the transport direction, x (i.e. perpendicular to 
the membrane), this electrochemical potential gradient can be expressed as 
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This gradient is the negative of the driving force on an ion, and results in 

an ion molar flux, Ji (mol/m2 s), in solution and membrane. By definition a 
molar flux is the product of molar concentration and velocity. This velocity is 
the product of the mobility and the total driving force. Combined in one 
formula, the ionic flux is given by 
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where ui is the electric mobility (m2/V s), which is related to the ion diffusion 
coefficient, Di (m2/s) according to the Einstein(-Smoluchowski) relation 
[31,32] 

Tii
VuD =                                                                                                         (7) 

 
   Inserting Eqs. (5) and (7) in Eq. (6) results in 
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which is the well-known Nernst-Planck flux equation that can be rewritten to 
the more common form 
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In electrochemical system, the convective transport in the direction 

perpendicular to the membranes is often assumed to be negligible in 
comparison with the diffusion and migration terms [33-39]. Therefore a 
convective term, ci·vf, where vf is the fluid (water) velocity (m/s), has for now 
been neglected in Eq. (9). The fluid velocity results from pressure differences, 
ion concentrations and a water-membrane friction coefficient, fmδ (mol s/m4), 
see Eqs. (29) and (30) in reference [40]. 

When there are multiple permeating monovalent species, and especially 
in biological systems [41], the membrane potential (ϕm) is sometimes 
calculated using the Goldman-Hodgkin-Katz (GHK) voltage equation [34,42]. 
This equation takes the permeability of each permeating species into account. 
The GHK equation is given by 
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where 

 

miiTi uVP δβ /=                                                                                            (11) 
 

where P is the ion specific permeability (m/s), δm the membrane thickness 
(m), β the partition coefficient (-) between the membrane and solution 
(defined by the Donnan equilibrium on the solution-membrane interface), and 
N and M refer to the number of ionic species. The GHK equation, Eq. (10), 
can be derived from the Nernst-Planck (NP) flux equation, Eq. (9), as 
described in references [34,35,42]. When there is only one permeating 
monovalent ion present, the GHK reduces to the Nernst equation, Eq. (4). 

 
2.2. The membrane potential in IEMs 

IEMs contain a high concentration of fixed charges. These charges are 
due to ion exchange groups that are covalently bound to the membrane 
polymer structure. For anion exchange membranes (AEMs), quaternary 
ammonium groups can be used, while cation exchange membranes (CEMs) 
can be based on sulphonic acid groups [24,43]. For commercial IEMs the 
fixed membrane charge concentration, here denoted by X, can be around 5-6 
M when defined per volume of aqueous phase in the membrane [44,45]. This 
fixed membrane charge can be regarded as a non-diffusible ionic species [46] 
and as such participates in the Donnan equilibrium. Ions in the external 
solution with a charge sign opposite to that of the fixed charge groups, are 
called counterions, and these ions readily enter the membrane. Ions with the 
same charge sign as the fixed membrane charge are called co-ions, and these 
ions enter the membrane only in small numbers. The large difference between 
the internal concentration of co- and counterions in the membrane is often 
referred to as Donnan exclusion, and it determines the selectivity of the 
membrane [46-50]. 

With a concentration difference over an IEM, or over a stagnant diffusion 
layer (SDL, a layer through which ions can migrate, but without tangential 
fluid flow or fluid mixing), a diffusion potential (ϕdiff) develops due to 
differences in ionic mobility of the diffusing ions [48,49,51]. If one ionic 
species diffuses faster than the other (D+ ≠ D-), this will results in a minute 
charge separation that leads to an electrical potential gradient, ∇φ [49]. In an 
IEM, and with zero current, ∇φ aids the co-ion, and retards the counterion. 
Integrated over the entire membrane interior, the resulting diffusion potential 
ϕdiff (also known as the constrained liquid junction potential) is related to the 
concentration gradient in the membrane of all ionic species [52]. 

To calculate the diffusion potential, we must first of all consider local 
electroneutrality (EN) in the membrane. For a 1:1 solution, EN relates at 
every position the concentration of counterions and co-ions according to 

 

0=+− − Xcc ioncocounterion ω                                                                         (12) 
 

The parameter ω indicates the charge sign of the fixed membrane charge 
(ω=-1 for CEMs, and ω=+1 for AEMs). The diffusion potential can then be 
obtained by solving the Nernst-Planck equation, Eq. (9), for both co-ions and 
counterions, and making use of the zero-current condition, 
 

0=− −ioncocounterion JJ
                                                                               (13) 

 
as further treated in Appendix A. In the theoretical case of a 100% 
permselective membrane, no mobile co-ions are present in the membrane 
phase, but only counterions and fixed membrane charges. In that specific 
case, due to the electroneutrality condition [11], no diffusion can take place 
and the diffusion potential is zero. 

According to Donnan equilibrium, across the membrane/solution 
interfaces, the electrochemical potential of each ion must be equal in the 
external and internal phase. When using Eq. (4), and replacing left and right 
side by external and internal phase, one finds that there can be a substantial 
difference between the electric potential in the external phase, ϕext, and in the 
internal phase, ϕin. The difference is the Donnan potential, ∆ϕD, and relates to 
the electrical double layer (EDL) that forms at the membrane/solution 
interface [28,48]. Because there are two such interfaces, there are also two 
Donnan potentials, given by 
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Addition of these two Donnan potentials to the diffusion potential inside 

the membrane phase results in membrane potential, ϕm [22,33,44,49,53,60], 
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L

Dm φφφφ +∆−∆=
                                                                          (15) 

 
where ϕm is the membrane potential (V), ∆ϕD the Donnan potential (V) on the 
left hand (L) and right hand (R) side of the membrane, and ϕdiff is the diffusion 
potential (V). Figure 1 shows these potentials schematically. The Donnan 
potential is also referred to as the exclusion potential as it can include both 
electrostatic (repulsion) and steric (size exclusion) effects [49]. For ionic 
solutions steric effects are much smaller than electrostatic effects and are not 
further discussed in this work. 
 

 
Fig. 1. Schematic representation of concentration, c, and potential, ϕ, profile in an 
ion exchange membrane (IEM) between two electrolyte phases of different 
concentration, bulk L and bulk R, when no current is applied. Here X is the fixed 
membrane charge, ϕdiff the diffusion potential, ∆ϕD the Donnan potential of side L 
or R, and ϕm is the resulting membrane potential. 
 

2.2.1. Effect of the stagnant diffusion layer 

With transport through the membrane, on either side of the membrane a 
stagnant diffusion layer (SDL) develops [15,22,23,25,61]. This layer, or film, 
is also known as the Nernst diffusion layer [22,62-64], diffusion layer [22,24] 
or (diffusion) boundary layer [23,43,48]. In the absence of current, diffusion 
initiates mass transport, and in case ions have different diffusion coefficients, 
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migration develops as a driving force upon the ionic species in an SDL, which 
results in a diffusion potential across the SDL. Therefore, Eq. (15) can be 
extended with the potentials arising over the SDLs adjacent to the membrane, 
and the total membrane potential is then [25,65-68]: 
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as schematically shown in Figure 2. 
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Fig. 2. Schematic representation of concentration, c, and potential, ϕ, profile in the 
bulk solutions, the stagnant diffusion layers (SDLs), and in an ion exchange 
membrane (IEM) when no current is applied. Symbols as in Figure 1. 
 
Generally, the diffusion potentials due to transport across the SDLs are 

neglected when considering the membrane potential, which is justified at low 
concentration differences over the membrane, very thin SDLs, and densely 
charged IEMs. However, effects of the SDLs are often considered in 
processes where an electric potential is applied over one or multiple IEMs, 
such as in electrodialysis. In that case, when an electric current is applied over 
an IEM (and the accompanying SDLs), concentration polarization takes place 
in these SDLs [38,63,65,69]. Concentration polarization is then caused by the 
membrane selectivity between counterions and co-ions [24,43,48]. The 
diffusional and migrational forces acting on ions when a current is applied are 
schematically shown in Figure 3. So, besides formation of a diffusion 
potential in the SDL, concentration polarization in the SDL affects the ion 
concentrations at the membrane-solution interfaces, which also affects the 
membrane potential. The relative influence of the SDL depends on i) the ratio 
of SDL thickness, δSDL, over the membrane thickness, δm (m), ii) the ratio of 
the ion diffusion coefficient in the SDL, D over the ion diffusion coefficient 
in the membrane, D  (m2/s), and iii) the ratio of the external ion concentration 

c, over the internal ion concentration c (mM) [22,25]. 
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Fig. 3. Schematic representation of concentration, c, and potential, ϕ, profile in the 
bulk solution, the stagnant diffusion layer (SDL), and in an ion exchange membrane 
(IEM) when a current is applied. Driving forces acting on the ions are shown as 
vectors. 

 
2.3. Modeling the IEM potential 

The membrane potential across an IEM is widely studied, especially for 
situations were only monovalent ions are present [53,55,58,70-72]. A more 
limited number of studies discussed the membrane potential when the 

membrane is separating ionic mixtures with divalent ions [53,54,56,57,73,76] 
while for multi-ionic mixtures, the membrane potential is not often studied 
[53,76]. Prediction of membrane potentials with multi-ionic electrolytes of 
different concentrations or different ion valencies is complicated and 
mathematically complex [53,76]. 

The earlier mentioned GHK equation, Eq. (10), that is often used in 
relation to biological membranes, is in most cases not suitable for calculation 
of the membrane potentials across IEMs. Attempts were made to expand the 
GHK equation to incorporate effects of surface charge and divalent ions 
[18,41,77,78], but an adequate prediction of the membrane potential of IEMs 
with the GHK equation is difficult [23,41]. For IEMs, many models were 
developed in an attempt to model the membrane potential. Basically three 
approaches to investigate the membrane potential are widely used; i) the 
Teorell-Meyer-Sievers theory, ii) the (electrokinetic) space charge model 
(SCM), and iii) the theory of irreversible thermodynamics. Of these three, the 
first two most easily implement physical and chemical information. In the 
present work the focus is on TMS theory, but also the SCM will be discussed. 
For the theory of irreversible thermodynamics, see for instance references 
[13,14,52,79-82]. 

 
2.3.1. Teorell-Meyer-Sievers theory 

Eq. (15) is the starting point of the Teorell-Meyer-Sievers (TMS) theory 
[11,12,23,83-86], which is used to predict the membrane potential across an 
IEM. An expression for the standard TMS theory, given by Eq. (17), is 
derived in Appendix A as 
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where 
 
( ) ( )−+−+ +−= uuuuU /                                                                              (18) 

 
In Eq. (17), the first term on the right hand side is the Donnan potential, 

while the second term is the diffusion potential. Similar results can be 
obtained with the equation defined in ref. [86]. However, Eq. (17) differs 
from the equation given by Lakshminarayanaiah [23] and Barragan et al. [87], 
as there a ω-term (or minus sign) in front of the Donnan part is missing (the 
diffusion part in those equations equals Eq. (17) for ω=-1, but for the Donnan 
part ω=+1 is implicitly assumed). 

The TMS theory is often used, as it is a one dimensional (1D) model that 
is mathematically not very complicated. The original TMS theory assumes 
only gradients from one side to the other of the membrane, membrane pores 
substantially larger than the ion radius, an ideal solution of point ions (activity 
coefficients of the ions to be equal to unity, so ai=ci), no pressure-volume 
term (no convection), and an equal and evenly distributed membrane charge 
at all external concentrations [11,12,23,83,84,86]. And although the TMS 
theory can predict the reversible membrane potential (OCV) for certain 
external concentration ranges [23], also (large) deviations are reported 
[49,57,58,84,86-89]. In the TMS theory one of the three driving forces, the 
pressure gradient, is neglected. The TMS theory was extended with the 
convective water flow in the ‘uniform potential model’ [15,25,90-92]. 

 
2.3.2. The space charge model 

The SCM, or capillary pore model, developed by Osterle and co-workers 
[93-95] is a two dimensional (2D) model that takes into account gradients 
both in the axial and radial direction. Also, fluid transport is included in this 
model [96]. In contrast to TMS theory, the SCM includes assumptions about 
the membrane structure. This is necessary because radial gradients within the 
membrane pores are taken in account. In the original SCM, parallel 
cylindrical pores are assumed with the fixed membrane charge uniformly 
distributed over the pore walls while ions are regarded as point charges. 

In the SCM, the NP equation, extended with a convection term, is used to 
describe the ion and water fluxes through the membrane. The Navier-Stokes 
equation is used for the fluid velocity in the pore. The Poisson-Boltzmann 
(PB) equation is used to describe the ion and electrical distribution (in the 
EDL) within the pore. The SCM is based on the three earlier mentioned 
driving forces that determine the membrane potential: the electric potential 
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gradient: the chemical (osmotic) potential gradient, and the pressure gradient 
[93-95,97]. These three driving forces are not independent but are linked by 
three equations with each three terms and three coupling coefficients (Kij). 
The resulting 9 coupling coefficients reduce to 6 by Onsager’s reciprocal 
theorem (Kij=Kji) [98]. It was already mentioned that whenever a 
concentration gradient ( µ∇ ) is present in a (charged) membrane, this will 

lead to the development of an electric potential gradient ( φ∇ ). However, due 

to differences in concentration (or composition) of the external solutions there 
is as well a difference in osmotic pressure (Π) in these external solutions 
which leads to an effective pressure gradient ( P∇ ). So even if no (hydrostatic 
or hydraulic) pressure is applied (Phyd), effectively a pressure gradient is 
present in the membrane, resulting in fluid flow (osmosis) through the 
membrane pores. The effective pressure gradient in the membrane is defined 
as [40,86,99,100]: 

 
Π∇−∇=∇ hydPP

                                                                                    (19) 
 
By this definition, movement of fluid against a hydrostatic pressure, 

toward location of higher osmotic pressure (e.g. in seawater reverse osmosis) 
can be understood. 

 
2.3.3. Water transport 

Across the membrane-solution interface (I) of a highly charged IEM the 
osmotic pressure (∆ΠI) suddenly changes, because the ion concentration 
changes from the concentration in the external solution to the value in the 
internal solution (within the membrane) over a distance of the order of a few 
times the Debye length [90]. As shown by refs. [40,90,101], the change in the 
osmotic pressure results in an equal change in the hydrostatic pressure across 
the solution-membrane interface (∆ΠI=∆Phyd

I). The pressure increase from the 
bulk to the internal solution will be larger on the membrane side facing the 
lower external solution ion concentration, resulting in a pressure gradient in 
the membrane pore that pushes the fluid flow towards the high salt 
concentration (positive or normal osmosis) [15,40,90,101,102]. Besides the 
pressure gradient, also the electric potential gradient (electric field) in the pore 
is a driving force for osmosis [40,90,103,104]. This fluid transport which is 
induced by ion migration is known as electro-osmosis [24,105]. Finally, water 
can be ‘bound’ to ions in the primary hydration sphere [106-108] or dragged 
along in a secondary hydration sphere or as ‘free’ water [107-109], which can 
lead to large water transport numbers [105,109]. Membrane properties 
influence the amount of water that is transported by the ions and in general a 
small pore size and hydrophobicity, or a low water content of the membrane, 
limit water transport [108-111]. 

Electro-osmotic transport depends on ion fluxes and ion diffusion 
coefficients and is independent of osmotic pressure. Direction and velocity of 
the fluid flow may vary with different ionic mixtures as described in refs. 
[15,90,101,104], so just as the solute (ions) also the fluid (water) can be 
transported against its chemical potential gradient (anomalous osmosis). 
Neglecting convection in the SCM, or including convection in the TMS 
theory, was found to have for most cases only a small effect on the calculated 
membrane potential [49,84,112]. 

 
2.3.4. Radial concentration gradients 

In the SCM besides axial ion gradients, also radial ion gradients in the 
membrane pore are considered. It was found that the assumption of a uniform 
distribution of ions across the pore diameter leads to an overestimation of the 
co-ion exclusion effect, which results in incorrect estimation of the ion fluxes 
and the membrane potential in the TMS approach [49,86]. In the limit when 
EDLs in the membrane pores are fully overlapped, gradients in the radial 
direction disappear, and differences between the SCM and TMS theory (with 
convection included) must vanish. The thickness of the EDL is roughly 
represented by the Debye length and is a function of the external 
concentration, cext, at the membrane-solution interface [49,97]. At room 
temperature and for a monovalent 1:1 salt, the Debye length, λD (nm) can be 
approximated by λD≈10/√cext (λD in nm, cext in mM) [113]. It should be noted 
that the Debye length is not based on the ion concentration within the EDL 
but on the concentration of the external solution [113]. For densely charged 
IEMs a typical pore radius, rp, of ~1-2 nm  may be assumed [43,86]. Thus, for 
cext = 10 mM, and λD≈3 nm, assuming fully overlapped EDLs is valid. 

However, at higher external concentrations, where λD<rp, the assumption of 
fully overlapping EDLs would not be correct [114,115].     Radii of hydrated 
ions are several Ångström [116,117], so in densely charged IEMs, with 
nanoscopic pores, the volume fraction of ions in the pore is not insignificant 
[44,118]. Therefore, ions cannot be infinitely close to the wall, or to each 
other, and both the TMS theory, and the SCM (both of which assume ions as 
point charges) will overestimate the concentration of ions in the membrane 
pore [44, 86]. Also the thickness of the EDL will be influenced when the ion 
size is included, and will be larger than calculated with the PB equation. Fully 
overlapping EDLs may therefore be present at higher cext than estimated on 
the basis of the earlier given Debye length approximation. Detailed 
consideration of concentration profiles [119-121] will therefore be of less 
importance in very narrow and highly charged pores (rp ~1-2 nm) where 
radial gradients diminish. 

For membranes with larger rp (e.g. used in nanofiltration, NF) and a 
considerable fixed charge density, these gradients are more important 
However, for membranes with large rp and low fixed charge density, the 
gradient is also of less importance and predictions of the membrane potential 
by the TMS theory and the SCM will become closer again. Interesting are the 
cases with a low external concentration on one side and a high concentration 
on the other side of the membrane. In this situation, the EDLs can change 
from (fully) overlapping to (partly) non-overlapping along the axial direction. 
Proper estimation of the internal ion concentration is in that case required. 
Figure 4 gives a schematic representation of the concentration gradients in 
membrane pores according to the TMS theory and the SCM. 

 

 
Fig. 4. Schematic representation of a membrane pore and the concentration 
gradients in the radial direction according to the theory of Teorell-Meyer-Sievers 
(TMS) and the space charge model (SCM). The solid line refer to membranes with a 
relative low fixed charge density, X, and the dashed lines to a membrane with a 
high fixed charge density. The external salt concentration, cext, is indicated by the 
thin line, pore radius is shown as rp and the Debye length is λD. 

 
To overcome some of the shortcomings of the SCM, Basu and Sharma 

[122] and Cervera et al. [86,118] extended the SCM theory and included 
effects of ion size, dielectric saturation, hydration, and surface charge 
regulation. By incorporating finite ion size the ionic selectivity increases, 
while on the other hand conductance will decrease as a result of lower internal 
concentrations and decreased diffusion coefficients [118,122]. Charge 
regulation, dielectric saturation and ion hydration significantly influence the 
model results and a good agreement with experimental results was obtained 
[122]. The effects of finite ion size and hydrodynamic retardation only 
became important for small pore diameters and high salt concentrations [122], 
e.g., for dense and highly charged IEMs. 

 
3. Experimental section 

3.1. Materials 

The membrane potential over a CEM was experimentally investigated in 
a six-compartment stack, of which the details are described in refs. [123,124]. 
Two shields (Perspex 2 mm), with a circular hole were placed on either side 
of the membrane under investigation. These shields lowered the effective area 
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of the membrane under investigation to 2.84 cm2, instead of its standard 
effective area of 23.8 cm2. These shields stabilize the membrane and lower 
the diffusion area between the measuring solutions. All membranes in the 
setup are CEMs (CMX, Neosepta®, Tokuyama Corporation, Japan). The 
effective area of the four auxiliary membranes was 23.8 cm2 each, and all six 
compartments had a volume of 95 mL. 

A galvanostat (Ivium Technologies, The Netherlands) was used to 
measure the electrical potential over the membrane under investigation. To 
measure this potential, two Haber-Luggin capillaries were placed on either 
side of the membrane. These capillaries were connected with a reservoir by 
silicon tubes (inner diameter 4 mm, length ~100 mm). Both reservoir and 
capillary were filled with the same solution (and same concentration) as 
present in the specific compartment. In these reservoirs Ag/AgCl gel 
electrodes (QM711X, QIS, The Netherlands) were placed, which were 
connected to the galvanostat. The distance between the capillary tip and the 
membrane was 4.5±0.1 mm and was equal for all measurements. Salt 
solutions were prepared with demineralized water and NaCl (analytical grade, 
Boom B.V., The Netherlands). The concentrations of the measurement 
solutions were varied between 0.01-1.1 M in the first series of experiments, 
also described in ref. [124] and shown in Figure 5. For the second series 
experiments (results are shown in Figure 8) the solution concentration was in 
the range of 0.001–5 M. 

 
3.2. Methods 

Using a thermostatic bath the temperature of the solutions in the six-
compartment stack was controlled at 25 ± 0.5 oC. The solutions were kept in 1 
L bottles, which were submerged for 75% in the thermostatic bath. Solutions 
were circulated through the stack with a flow rate of 170 mL/min. Before start 
of each experiment the temperature was checked with a glass thermometer. 

The membranes under investigation were stored in a 0.5 M NaCl 
solution. After installing the membranes in the stack, they were equilibrated 
for at least 1 hr with the measurement solutions on each side of the membrane 
before the experiment was started. After this time, solutions in the system 
were refreshed and continuously flushed through the stack in order to undo 
possible concentration changes in the solution due to diffusion effects. The 
largest concentration gradient over the membrane was present when solutions 
of 1 mM and 5 M were used. The difference in conductivity of these two 
solutions was measured directly before and after the experiment. The change 
in conductivity was always <1%. Therefore, concentrations of the solutions 
could be considered constant during the experiments. 

The membrane potential was measured under open circuit conditions (1 
measurement/sec) by chronopotentiometry [124]. Three series of 
measurements were made. Each series started with 5 min open circuit 
conditions, followed by a defined range of applied current densities [124]. 
The first minute after applying the current was not used for measuring the 
membrane potential. Based on the remaining (3x) 4 min, the average 
membrane potential was determined. The same measurements were also made 
with the salt concentration gradient reversed, i.e., the solutions on either side 
of the membrane were switched around. A second, independent measurement 
value of the membrane potential was thereby obtained. When there is no 
concentration difference over the membrane, the membrane potential is by 
definition zero. However, due to offset between the two reference electrodes 
still a potential can be measured. This offset was determined as 1.4±0.1 mV. 
The experimentally determined values were corrected for this electrode offset. 

 
 

4. Results & Discussion 

4.1. Experimental results 

Figure 5 shows the experimentally determined, and theoretically 
calculated, membrane potential for different NaCl concentrations of the two 
external solutions (clow and chigh). 

When the two external solutions are equal (clow=chigh), there is no gradient 
in any property and consequently there is no membrane potential (as φ∇  = 

P∇ = µ∇ = 0). For clow≥0.3 M, Figure 5 shows that the experimental and 

theoretical potentials are very close. However, when clow=0.1 M, a small, but 
distinct, difference develops between the experimental and theoretical value 
of ϕm, and the deviation of TMS theory increases when clow=0.01 M. The TMS 
theory, Eq. (17), overestimates the experimentally obtained membrane 
potential. This overestimation of the membrane potential was also reported in 

references [23,49,57,87,88,125]. These deviations imply that certain 
assumptions in the TMS theory are no longer valid for the dense and highly 
charged CMX membranes which are used here, under the experimental 
conditions. 
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Fig. 5. Measurement of the membrane potential (φm, mV) as function of 
low and high salt concentration (clow next to lines; chigh plotted on x-axis). 
Solid lines: standard TMS theory. 

 
The assumptions that are made in the TMS theory are as follows: i) No 

concentration gradient in the radial direction in the membrane pores; ii) 
Membrane pores are substantially larger than the ion radius; iii) Ions behave 
as thermodynamically ideal point charges (so ai=ci); iv) Membrane pores are 
homogeneous throughout the membrane, and the fixed membrane charge is 
evenly distributed; v) At the membrane surfaces Donnan equilibrium is 
established; vi) The membrane structure does not change, the pore volume is 
constant, and the membrane charge density is equal at all external 
concentrations; vii) Convective water transport is negligible; and viii) The ion 
mobility ratio in the membrane is equal to that in the external solution. 

Assumptions i) and ii) from this list are considered valid for the dense 
and highly charged IEM used in the experiments. These assumptions were 
already discussed in section 2.3.4. The effect of the other assumptions (iii-
viii) on the calculated membrane potential is investigated in the next section, 
where various modifications or extensions of the TMS theory are considered. 

 
4.2. Theoretical results 

Figure 6 shows in panels A–F how different parameters, which relate to 
assumptions iii)–viii) above, influence the predicted membrane potential 
according to the TMS theory. The different panels show the effect of: A) ion 
activity, B) inhomogeneous distribution of the fixed membrane charge, C) 
including SDLs in the TMS theory, D) assuming a decreased (effective) 
membrane charge density, E) including osmotic water transport, and F) 
changing the ion mobility ratio. Concentration clow was fixed at 0.01 M, while 
chigh is indicated on the x-axis. Solid lines give the standard TMS theory, and 
dashed lines are for modifications of the model. 

Figure 6-A shows the effect on the TMS theory when the ion 
concentrations of the external solutions are replaced by the ion activities that 
are calculated according to 

 

iii ca γ=                                                                                                      (20) 
 

where ai is the ion activity (mM) and γi the ion activity coefficient (-). To 
support the use of Eq. (20) we must note that not all solutions that we used 
were dilute, so that γi=1 is not a valid in all cases [23,84]. The activity 
coefficients were obtained from ref. [126]. Figure 6-A shows the quite 
significant difference between the TMS theory based on concentrations, and 
the modified approach using activities. In addition, we compare in Figure 7-A 
TMS theory with the maximum, Nernst, membrane potential (ϕmax) according 
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to the Donnan relation (Eq. 4), which is very close to TMS theory. This 
implies that the effect of the diffusion potential ϕdiff, on the membrane 
potential, ϕm, is very small, which is expected because X>>cext. This also 
implies that in this case, activity coefficients in the membrane can be 
neglected. For that reason as a first approximation we can simply replace in 
the TMS theory the ion concentrations in the external solutions by the ion 
activities which then affects the Donnan potentials [86]. Use of ion activities 

greatly improves the prediction of the membrane potential when chigh=0.1-0.3 
M, where the value of γ changes, rapidly. In absolute terms, the effect is the 
largest when the activity coefficient reaches a minimum (at ~1 M). The effect 
of using ion activity instead of ion concentration diminishes when the 
concentration gradient is small and γi

L ≈ γi
R. 
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Fig. 6. Testing of six modifications of TMS theory. Diamonds: experimental values of membrane potential (ϕm, mV). Low external NaCl solution concentration 0.01 M; high 
concentration plotted on the x-axis. Solid line: standard TMS theory. Effect of A) Ion activity (activity coefficients in ref. [126]); B) Inhomogeneous charge distribution; C) 
Stagnant diffusion layers adjacent to the membrane of specified thickness (δSDL); D) Lowering the fixed membrane charge density; E) Osmosis at different water-membrane 
friction coefficients, fmδ; F) Lowering the diffusion coefficient of the counterion ( +NaD ) in the membrane. 
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In literature, activity coefficients of ions in the membrane and their 
effects on the membrane potential are discussed for instance in references 
[23,26,60,85,86,125,127-130], and also ion size effects, as observed in a 
previous work [44], can be included in this membrane activity coefficient 
[86]. However, activity coefficients in the membrane are unknown [129] and 
therefore, its usefulness for highly charged membranes is still a question [26]. 

Figure 6-B shows that the membrane potential is not affected by a 
possible inhomogeneous distribution of the membrane charge, X. An 
inhomogeneous distribution of charge from one side to the other side of the 
membrane can be due to the manufacturing process [131] or due to unequal 
swelling of the two membrane sides because of the different salt 
concentration. Ramirez et al. [131] showed different options of the spatial 
charge distributions, of which in this work only the influence of the most 
straightforward distributions will be investigated, namely i) an asymmetrical 
linear distribution, and ii) a symmetrical linear distribution. These two 
distributions are sketched in Figure 7. X was previously determined as ~5.7 M 
for the membranes that we use [44], and therefore this value is used as the 
average fixed membrane charge density (indicated as <X>) in all cases. 
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Fig. 7. Asymmetrical and symmetrical linear distribution of the fixed membrane 
charge X (M), where <X> is the average membrane charge density. 

 
With the asymmetrical fixed charge distribution, there is a gradient in X 

across the membrane from position 0 to δ (left and right sides of the 
membrane). At one side the charge is lowered, on the other side the charge is 
increased relative to <X>. With the symmetrical linear charge distribution, X 
is equal at both membrane-solution interfaces (X0 = Xδ), but these values are 
respectively above or below <X>. 

In the theoretical calculations performed for the present study, using a 
modified TMS theory including the unequal charge distribution, based on 
numerically solving Eq. (17), no effect of the charge distribution was 
observed. Small deviations (<1 mV) were found due to the numerical 
procedure, especially when there is a large gradient of fixed charge. Effect of 
an inhomogeneous distribution of the fixed membrane charge on the 
membrane potential was also studied in refs. [131-136]. It was suggested by 
data in refs. [133,136] that when membranes with an asymmetrical fixed 
charge distribution separate two solutions of equal composition, and no 
current is applied, the membrane potential is not zero (ϕm≠0). However, 
according to our theoretical calculations this outcome is not possible, as was 
already discussed in the early 1970s in refs. [134,135]. These works conclude 
that such a potential can only be observed when no ions can penetrate the 
membrane, otherwise an internal diffusion potential will arise equal in 
magnitude, but of reversed direction as the difference in Donnan potentials 
[135]. In ref. [132] it is mathematically proven that under zero-current 
conditions, regardless of the fixed membrane charge distribution of an IEM, 
the membrane potential and salt transport must be zero when the membrane is 
separating two identical external solutions. In approximate models, non-zero 
equilibrium potentials can for instance arise due to invalidity of the 
Henderson equation [132]. This Henderson assumption is only valid when the 
external ion concentration is at least one order of magnitude smaller than the 
internal ion concentration (cext<<X) [27,127,132]. 

When a current is applied over a membrane with a distribution of 
membrane charge, effects of the fixed charge distribution can be observed as 
described in refs. [131,137]. Whereas, the permselectivity is mainly 
determined by <X>, other transport properties such as the selectivity can be 
observed to depend on the current direction in an asymmetrical membrane 
[131,137]. 

Figure 6-C shows the effect of including two SDLs (as shown by Eq. (16) 
and Figure 2) in the TMS theory (based on Eq. (15) and Figure 1). By 
including SDLs, assumption v) is affected, as the ion concentrations on the 
solution-membrane interface will change. Including SDLs in the model 

therefore lowers the theoretical membrane potential. The effect increases 
with SDL thickness, δSDL, as was also experimentally confirmed in ref. 
[68]. When an SDL thickness δSDL of 50 or 100 µm is used, the membrane 
potential shows a maximum. However, the shape of the curves differs 
significantly from the experimental data. Therefore, the simple addition of 
SDLs to the theory does not fully explain the observed differences 
between experimental and theoretical membrane potentials. 

Figure 6-D shows the effect of the fixed membrane charge density on 
the membrane potential. As mentioned, X was determined as ~5.7 M per 
unit aqueous volume in the membrane [44]. Reference [44] showed that X 
slightly increases with increased external solution concentration. An 
increase of X, however, leads to a higher membrane potential, as directly 
follows from Eq. (17). In literature, it is sometimes assumed that the 
effective fixed membrane charge density, Xeff, is lower than the actual 
value of X [87,88,125]. The effect on the calculated membrane potential 
can be large when X is lowered substantially. However, this leads to the 
situation that X is no longer much larger than the external salt 
concentration. Barragán et al. [87,88] found similar differences between 
practical and theoretical membrane potentials as in the present work. They 
explained these differences by assuming that Xeff is lower than the actual 
membrane charge due to tight binding of counterions to the fixed 
membrane charge sites, as described in ref. [125]. However, in the present 
work, we argue that the effective membrane charge is equal to the actual 
membrane charge, at least as long as only NaCl is used as the salt. The 
ions Na+ and Cl- do not bind to the fixed charges sites [22]. Figure 6-D 
shows that a lower X results in a reduced membrane potential but this does 
not lead to a better description of the experimental data. It was shown in 
literature that with a further increase of chigh eventually membrane 
potentials will go down again [88,138]. This maximum in the membrane 
potential will be discussed later on. 

Figure 6-E shows that adding water transport to the TMS equation 
[15,25,90-92] (i.e. adding the +ci⋅vf term to Eq. (9) and solving the model 
numerically) lowers the theoretical membrane potential. The water 
velocity, vf, is a function of the concentration difference over the 
membrane, the ion fluxes, and a specified friction coefficient between 
membrane and water, fmδ [40], as mentioned in the theory section. The 
water velocity is maximized at the highest concentration differences over 
the membrane (largest osmotic pressure difference) and for a minimum 
friction with the membrane, and is in opposite direction to the ion flux. In 
the standard TMS theory there is no water flow. When water flow with a 
high friction coefficient (fmδ = 5×106 mol s/m4) is included, the water 
velocity in the membrane is low and comparable to the counterion 
velocity (both in the order of 10 nm/s at a concentration difference of 0.01 
vs. 1 M). In the membrane the water velocity is constant because the ions 
are assumed to have no volume in the Nernst-Planck equation. The ion 
velocity, however, depends on the local ion concentration (as the ion flux, 
v⋅c, across the membrane is constant). The counterion concentration is 
almost constant throughout the membrane and thus the counterion 
velocity may be considered everywhere the same in the membrane. For 
co-ions, however, the concentration is strongly related to the ion 
concentration in the external solution [44] and, therefore, the ion velocity 
can be much higher at the membrane side that is facing the lowest external 
concentration (i.e. ~10,000 times higher at a concentration difference 
(0.01-1 M). When the water-membrane friction coefficient is lowered ten 
times (fmδ = 5×105), this results in an increase of the water velocity (~6 
times higher) and a slight decrease of the ion flux. Now the water velocity 
(~100 nm/s) becomes substantially higher than the counterion velocity, 
but is still much lower than the velocity of the co-ions. When the friction 
coefficient is lowered another ten times (fmδ = 5×104), this only leads to a 
doubling of the water velocity to ~200 nm/s (at the concentration 
difference of 0.01-1 M). A further decrease of the friction coefficient does 
not lead to substantial higher water velocities, and the additive effect on 
the water flux diminishes. Thus the effect of water transport by itself 
seems too small to explain the deviation that is observed between 
experiment and theory, even when there is assumed (almost) no friction 
between water and membrane. 

Earlier investigations on the effect of water transport on the 
membrane potential led to similar conclusions [49,60,84,112]. Sollner 
argues that measurement of correct stable potentials can be done long 
before any significant movement of water occurs [29], which underpins 
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the conclusion that water flow cannot be the origin of the discrepancy 
between data and theory. 

Figure 6-F shows the effect of a difference in the ratio of mobility (or 
diffusion coefficient) of the counterion versus co-ion in the membrane 
compared to solution. In this calculation the ion mobility of the counterion is 
lowered to a greater extent when moving into the membrane, than for the co-
ion. Usually it is assumed that the ionic mobility (of monovalent ions) in the 
membrane is around one order of magnitude smaller than the ionic mobility in 
the external solution, and that the ionic mobility ratio of counterions over co-
ions is equal in the membrane and external solution (both ions are retarded in 
the membrane to the same extent). It is, however, unknown to what extent 
individual counterion and co-ion mobilities are different between the external 
and internal solutions. Thus, it is rather difficult to say what will be the sign 
of the diffusion potential across the membrane. As Figure 7-F shows, 
changing the ion mobility ratio has a direct effect on the membrane potential 
as shown also by Eqs. (17) and (18). The origin of a lower ionic mobility can 
be enhanced ion-ion, ion-membrane, or ion-fluid interaction [49]. As shown 
in Figure 6-F, the membrane potential decreases when the mobility of the 
counterion is lowered relative to that of the co-ion. The effect is very similar 
to the effect shown in Figure 6-C, which can be explained by the fact that in 
both cases the transport of the counterion becomes more restricted than the 
co-ion. 

To conclude, the effects of the parameters shown in Figure 6-A to F do 
not (each by itself) explain the difference between experimental and 
theoretical membrane potentials that are shown in Figure 5. So, until now the 
TMS theory and the discussed modifications cannot explain the experimental 
results shown in Figure 6. It is most likely that a combination of the presented 
variables must be considered to explain the discrepancy between experiment 
and theory. With six variables to play with it seems certainly possible to fit 
the model to the experimental data in several ways [139], although the 
physical soundness of the different fitting parameters should then be carefully 
examined. The effect of each parameter will then be difficult to isolate [128] 
because the fitting parameters in the model affect each other (e.g. using 
activities leads to a lowered theoretical driving force for osmotic water 
transport). Isolation of effects of different parameters may only be possible 
with very precise experiments. 

 
4.3. Maximum membrane potential 

The experimental data in Figure 5 show that the membrane potential 
increases with an increasing concentration difference, ∆c, of the two external 
solutions, clow and chigh. This increasing membrane potential, however, seems 
to level off to a certain maximum value. Such a maximum value in membrane 
potential was also observed previously in references [88,138,140-143]. 
Beyond the maximum, the membrane potential decreases again. An ‘ideal’ 
membrane with perfect selectivity will have exactly the Nernst potential of 
Eq. (4). In that ideal membrane case there would be no maximum potential, 
but the potential infinitely increases with increasing ∆c. To further investigate 
this interesting phenomenon of the leveling-off of the membrane potential, 
additional experiments were performed according to the same methodology as 
the experiments of section 4.1. The salt concentration on the low 
concentration side, clow was either 0.001 M or 0.01 M NaCl, and chigh was 
between clow and 5 M NaCl (0.001, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, or 5 
M). Resulting membrane potentials from these experiments and the 
theoretical maximum potential, Eq. (4), are shown in Figure 8. To be 
consistent with ref. [138], the x-axis presents the activity ratio instead of the 
concentration ratio of the two external solutions. 

Figure 8 shows for the CEM a perfect cation selective behavior, up to a 
ratio of external activities of ~100 (“log 2”). Beyond that, the membrane 
potential starts to deviate from the ideal Nernst potential, which can be 
explained by the decrease of membrane selectivity [23,138,142,143]. With 
clow=0.01 M, we do not measure a maximum in the membrane potential, not 
even with chigh=5 M. However, when clow is decreased to 0.001 M, a 
maximum in the membrane potential is observed, around chigh≈1-2 M NaCl. 
For even higher salinities the membrane potential decreases again, as was also 
observed in refs. [138,142]. The question is what the mechanism behind this 
decreasing membrane potential is when ∆c becomes very large. In literature it 
was shown that a decrease in pore diameter and an increase in the fixed 
charge density postponed the deviation of the ideal potential (and formation 
of a maximum potential) to a larger external concentration ratio [138,142]. It 
was also suggested [142,143] that if the concentration of the external solution 

is similar to, or larger than, the fixed membrane charge density, the 
membrane loses its permselectivity, which then leads to a decrease in 
membrane potential. 

However, in a previous investigation it was found that the fixed 
membrane charge density of the membrane is ~5.7 M [44], a 
concentration that was not reached in the experiments of Figure 8, but still 
a decrease was observed. Figure 8 furthermore shows that when clow is 
increased from 0.001 to 0.01 M, the maximum in membrane potential is 
not found anymore. Moreover, when in that case chigh is 1 M (10log 
(ahigh/alow) ≈ 1.9) the membrane potential is still very close to the Nernst 
potential, while if clow = 0.001 M and chigh = 1 M (10log (ahigh/alow)≈2.8) a 
much large deviation of the Nernst potential is observed. From these 
observations it can already be concluded that not only the value of the 
highest external concentration is important, but also the ratio of the low 
and high salt concentration. 

The experimental results reported in Figure 9 suggest that the 
diffusive ion flux (of counterions and co-ions) through the pores is of 
influence to the membrane potential, as is also recognized by Makra et al. 
[142]. At the solution-membrane interfaces ‘large’ ion fluxes can cause 
concentration polarization. Figure 6 shows that including concentration 
polarization layers in the theory can help to explain the maximum in the 
membrane potential. Also further restriction of the counterion mobility 
compared to the co-ion mobility in the membrane can lead to the 
observation of a maximum membrane potential. 
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Fig. 8. Experimental membrane potential, ϕm, as a function of the logarithm of 
the ratio of the activity of the external solution with the high NaCl 
concentration, ahigh, over the activity of the external solution with the low 
NaCl concentration, alow. The dashed line indicates the activity based 
maximum potential, ϕmax, according to Eqs. (4) and (20); clow either 0.001 M 
(circles, crosses) or 0.01 M (squares), and chigh is varied between clow and 5 M. 

 
Note that in our work only three driving forces were considered, but 

it should be kept in mind that also a temperature difference, ∆T, can act as 
a driving force for mass transport [144,145]. This driving force becomes 
important in membranes used in fuel cell technology and membrane 
distillation [145,146]. Direction of the water flux due to temperature 
differences depends on the hydrophobicity of the membrane. Through 
hydrophilic membrane pores water is transported from the cold side to the 
hot side, while in a membrane with hydrophobic pores water is 
transported in the opposite direction [145,146]. Because in most 
membrane systems there is no, or only a very small, temperature 
difference between the external solutions, this driving force is neglected in 
most theories, although in electrochemical systems significant 
temperature gradients can locally be found [147]. 

 
 

5. Conclusions 

 With respect to the title question: ‘How well does the Teorell-Meyer-
Sievers theory work?’, the answer is that for the case of densely charged 
IEMs, and as long as the concentration difference across the membrane is 
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small, that TMS theory predicts the measured membrane potential very well. 
However, when the concentration difference increases, the unmodified TMS 
theory starts to deviate from the data. We find that using the ion activity 
instead of the ion concentration of the solutions adjacent to the membrane 
leads to a better prediction of the membrane potential. Charge inhomogeneity 
(charge distribution) has no effect on the membrane potential under zero 
current conditions. The effect of the two stagnant diffusion layers on either 
side of the membrane is large, but by itself cannot explain the deviation 
between theory and data. Lowering the effective membrane charge density 
can improve the theoretical prediction to some extent, but there is no good 
physical justification for this adjustment. The effect of water transport 
(osmosis) is small, even when in the theory the membrane-water friction is set 
to a very low value. Consideration of differences in the ionic mobility of the 
ions in the membrane phase can have a large effect on the membrane potential 
and can, just as including the SDLs, help to explain the development of a 
maximum in the membrane potential. 
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Appendix A 

   
 In this Appendix we show how the TMS theory can be derived from the 

Nernst-Planck flux equation which is Eq. (9) in the main text, and here given 
as Eq. (A1).  According to the TMS theory, the membrane potential is the 
sum of two Donnan potentials and a diffusion potential (Eq. (15)). These two 
terms will be discussed in this Appendix. 

 
Donnan potential at membrane-solution interface 

   The Nernst-Planck flux equation describes ion movement as function of 
a concentration gradient and an electric field gradient, neglecting a convective 
contribution due to fluid transport, 
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where Ji is the ion molar flux, ψ=ϕ/VT is the dimensionless electrical 
potential, and Di is the ion diffusion coefficient. The thermal voltage VT is 
given by VT=RT/F. 

   To derive the Donnan potential, Eq. (A1) is solved for the case that the 
gradients are much larger than the ion flux, which results in 
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   Next, Eq. (A2) is integrated across the solution-membrane interface, 

from just outside to just inside the membrane. The resulting voltage 
difference across the interface is the Donnan potential, 
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Both in the external solution, Eq. (A6), and in the membrane phase, 
Eq. (A7), electroneutrality is assumed, which is given for a 1:1 salt as 

 

0=− −+ cc                                                                                            (A6) 
 

0=+− −+ Xcc ω                                                                                     (A7) 
 

where the overbar refers to ion concentrations in the membrane. The fixed 
membrane charge density, X, is defined as a positive number while  the 
charge sign, ω, is either -1 (for CEM) or +1 (for AEM). Combining Eqs. 
(A5)-(A7) results in 
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To obtain an expression for the Donnan potential on either solution-

membrane interphase the equation can be rewritten as 
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Because  two Donnan potentials develop, one on left side (L) of the 

membrane and one on the right side (R), the total Donnan potential is then 
given as 
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Diffusion potential (potential difference within membrane) 

   Due to the imperfect selectivity of the IEMs a small number of co-
ions will diffuse through the membrane from the high concentration side 
to the low concentration side. For zero-current conditions, this co-ion flux 
is the same as the counterion flux. The current, being zero, is given by 
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   For further simplification, we divide by the diffusion coefficient of 
the positive ion, so there is only one system parameter, α, 
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and Eq. (A7) is used to relate the counterions to co-ions, to result in 
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   The membrane charge is assumed to be homogenously distributed 

and therefore, X is independent of x, and the variables can be separated, 
resulting in 
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which can be integrated across the membrane, leading to 
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   At the solution-membrane interfaces on the left hand and right hand 

side of the membrane, the expressions for the Donnan equilibrium can be 
used to relate the internal ion concentration to the external concentration and 
the fixed membrane charge, according to 
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   Inserting Eq. (A16) into Eq. (A15) leads to the following expression of 

the (dimensionless) diffusion potential 
 

( )
( )



















++
+

−

++
+

−

+

−
=

22

22

)2(
)1(
)1(

)2(
)1(
)1(

ln
1
1

L

R

diff

cXX

cXX

ω
α

α

ω
α

α

α

α
ψ

                                    (A17) 
 
Now, the following replacement can be made, 
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which can be inserted in Eq. (A17), to obtain 
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Inserting Eq. (A10) and Eq. (A19) into Eq. (15), leads to the TMS 

equation, 
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Nomenclature 

ai  ion activity (mol/m3) 
c  ion concentration (mol/m3) 
D  diffusion coefficient (m2/s) 
F  Faraday constant (C/mol) 
fmδ  water-membrane friction coefficient (mol s/m4) 
Ji  ion molar flux (mol/m2 s) 
Kij  coupling coefficient (-) 
P  pressure (Pa)  
Pi  ion specific permeability (m/s) 
ui  electric mobility (m2/V s) 
R  gas constant (J/mol K) 
rp  pore radius (m) 
T  temperature (K) 
vf  fluid velocity (m/s) 
X  fixed membrane charge density per unit aqueous phase 

 in membrane (mol/m3) 
x  distance perpendicular to the membrane (m) 
z  valence (-) 
α  system parameter (-) 
βi  ion partition coefficient (-) 
γi  activity coefficient (-) 
∆ϕD  Donnan potential (V) 
δ  thickness (m) 
λD  Debye length (m) 
µ  chemical potential (J/mol) 
µ~   electrochemical potential (J/mol) 

Π  osmotic pressure (Pa) 
φ  electrical potential (V) 
ω  indicator for charge sign (-) 

The overbar refers to membrane phase (e.g. c ) 
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