Physical Studies of Forward Osmosis Membranes Prepared by Cross-linking Polyvinyl Alcohol on Electrospun Nanofibers

Document Type: SI: Honoring AF

Authors

Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Abstract

The conventional nanofiber-supported forward osmosis (FO) membrane possessed some issues, for example, easy deformation and weak interfacial strength between the substrate and selective layer. A dual-layered composite membrane consists of electrospun nanofibrous membranes (ENMs) as the support layer and cross-linked polyvinyl alcohol (PVA) top coating as the active layer is fabricated. Hence, the objective of this work is to study the physical properties of the prepared PVA/ polyvinylidene fluoride (PVDF) composite membranes. The novelty of this work relies on the new exploitation of the prepared dual-layered thin film nanofibrous composite (TFNC) membranes via the cross-linked technique in the FO process. The experiment works include the fabrication of nanofibrous substrates and selective layer via electrospinning, followed by the PVA cross-linking process prior to the characterisation studies and FO evaluation. FO performance test revealed a comparable water flux with the conventional dual-layered composite membrane, besides exhibited a significantly low Js /Jw ratio. This study indicated that dual-layered cross-linked PVA on electrospun PVDF nanofibers is a promising approach to overcome the drawback of the existing issues in the conventional method of preparing surface coated composite membranes which is a viable option to manufacture high-performance TFNC-FO membranes.

Graphical Abstract

Physical Studies of Forward Osmosis Membranes Prepared by Cross-linking Polyvinyl Alcohol on Electrospun Nanofibers

Keywords

Main Subjects