Activator Generated Electron Transfer Combined Atom Transfer Radical Polymerization (AGET-ATRP) for Controlled Grafting Location of Glycidyl Methacrylate on Regenerated Cellulose Ultrafiltration Membranes

Document Type : Research Paper

Authors

1 Radiochemistry Division, RLG, Bhabha Atomic Research Centre, Mumbai, Trombay, Maharashtra, 400085

2 Ross E Martin Chair in Emerging Technologies Director, Membrane Science, Engineering & Technology (MAST) Center University of Arkansas, Ralph E Martin Department of Chemical Engineering, 1475 W Cato Spring Road, Fayetteville, AR 72701, USA

Abstract

This investigation indicates the ability to selectively graft glycidyl methacrylate (GMA) only from the external surface of regenerated cellulose (RC) ultrafiltration (UF) membranes using activator generated electron transfer (AGET) atom transfer radical polymerization (ATRP). This controlled polymerization resulted in epoxy functionalized polymer brush ends. Further reaction of the terminal epoxy groups provides a flexible platform to introduce desired functionalities either by electrophilic or nucleophilic epoxy ring opening. Selective grafting from the external membrane surface was achieved by using an appropriate pore filling solvent prior to modification. A high viscosity pore filling solvent that is immiscible with the reactive monomer solution used during surface modification was the most effective in supressing grafting from the internal pore surface. The effects of grafting on membrane performance were evaluated by determining water permeability and protein rejection.

Graphical Abstract

Activator Generated Electron Transfer Combined Atom Transfer Radical Polymerization (AGET-ATRP) for Controlled Grafting Location of Glycidyl Methacrylate on Regenerated Cellulose Ultrafiltration Membranes

Keywords


Volume 6, Issue 1
Membrane Science and Research: A Tribute to Professor Takeshi Matsuura
January 2020
Pages 90-98
  • Receive Date: 04 June 2019
  • Revise Date: 24 September 2019
  • Accept Date: 28 September 2019