Combined Three Mechanisms Models for Membrane Fouling during Microfiltration

Document Type : Research Paper


Membrane Research Center, Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran


Five new mathematical triple fouling models were developed to explore the flux decline behavior during the microfiltration. The first model was developed by the assumption of the successive effects of standard mechanism, intermediate pore blockage and cake formation by using the standard blocking flux expression in the model calculations. The second and third models also obtained by the successive effects of pore constriction, pore blockage and cake formation mechanisms but in the calculation of these models, the Hagen-Poisseuille law for the filtrate flux has been used. For the fourth and fifth models, the classical standard mechanism has been modified by the assumption of zero order time dependent equation for the particle deposition inside the pores. In these models, the zero-order standard mechanism has been used instead of the classical standard mechanism to combine with the pore blockage and then the cake formation mechanism and the Hagen-Poisseuille law. The ability of developed models for the prediction of experimental data for the bovine serum albumin (BSA) filtration was examined. The zero-order standard complete pore blockage-cake formation and the zero-order standard intermediate pore blockage-cake formation models provide fit experimental data, and predict well. 

Graphical Abstract

Combined Three Mechanisms Models for Membrane Fouling during Microfiltration


Main Subjects

Volume 5, Issue 4
October 2019
Pages 274-282
  • Receive Date: 16 October 2018
  • Revise Date: 28 March 2019
  • Accept Date: 28 March 2019
  • First Publish Date: 01 October 2019