Hyperbranched Polymer Integrated Membrane for the Removal of Arsenic(III) in Water

Document Type : Research Paper

Authors

1 Department of Applied Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.

2 Department of Chemistry, University of Swaziland, Private Bag 4, Kwaluseni, Swaziland.

3 P.O Box 17011, Doornfontein Department of Applied Chemistry, University of Johannesburg

Abstract

This work demonstrates the synthesis, characterization and application of a hyperbranched polyethyleneimine/polysulfone (HPEI/PSf) thin fi lm composite (TFC) membrane. The membrane was accessed via an interfacial polymerization of trimesoyl chloride and HPEI. The membrane samples were characterized by Fourier Transform Infrared-Attenuated Total Refl ectance (FTIR-ATR) spectroscopy, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Contact angle and streaming potential measurements were used to measure the wettability and study the surface chemistry of the TFC membranes, respectively. Water fl ux and rejection studies were performed using a dead-end fi ltration cell system operated at 600 kPa. The binding affi nity of the fabricated membranes to abstract As(III) from synthetic and spiked tap water samples was assessed. FTIR-ATR spectra illustrated that a polyamide fi lm was successfully deposited onto the commercial PSf membrane. AFM analysis revealed that the surface roughness of the membranes increased from 13.9 nm to 140.0 nm upon HPEI loading. Contact angle measurements indicated an increase in the hydrophilicity from 86.95° for pristine PSf to 39.97° for the HPEI modifi ed membranes. Generally, the HPEI/PSf membranes showed a high water uptake (up to 96.6±0.76%) as compared to the pristine PSf membranes (up to 53.5±0.7%). The hyperbranched polymer integrated membranes exhibited high As(III) retention of 78% and 55% for synthetic water and spiked tap water samples, respectively.

Graphical Abstract

Hyperbranched Polymer Integrated Membrane for the Removal of Arsenic(III) in Water

Keywords

Main Subjects


[1] H. Salazar, J. Nunes-Pereira, D. M. Correia, V. F. Cardoso, R. Gonçalves, P. M. Martins, S. Ferdov, M. D. Martins, G. Botelho, S. Lanceros-Méndez, Poly(vinylidene fluoride-hexafluoropropylene)/bayerite composite membranes for efficient arsenic removal from water, Mater. Chem. Phys. 183 (2016) 1–9.
[2] M. R. Ramudzuli,A. C. Horn, Arsenic residues in soil at cattle dip tanks in the Vhembe district, Limpopo Province, South Africa, S. Afri. J. Sci. 110 (2014) 1–7.
[3] SANS, Drinking water Quality Requirements: South African National Standard 241: drinking water (ed. 6). South Africa, Pretoria, 2006 (2006) 6–8.
[4] P. Kempster, M. Silberbauer, A. Kuhn, Interpretation of drinking water quality guidelines – The case of arsenic, Water SA. 33 (2007) 95–100.
[5] K. Sami and A. Druzynski, Predicted spatial distribution of naturally occurring arsenic, selenium and uranium in groundwater in South Africa, WRC report no. 1236/1/03. 2003.
[6] M. Cakmakci, A. B. Baspinar, U. Balaban, V. Uyak, I. Koyuncu, C. Kinaci, Comparison of nanofiltration and adsorption techniques to remove arsenic from drinking water, Desalin. Water Treat. 9 (2009) 149–154.
[7] C. Trois, A. Cibati, South African sands as an alternative to zero valent iron for arsenic removal from an industrial effluent: batch experiments, J. Environ. Chem. Eng. 3 (2015) 488–498.
[8] W. J. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J. Paul Chen, and A. F. Ismail, A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches, Water Res. 80 (2015) 306–32.
[9] E. Erhan, B. Keskinler, G. Akay, O. F. Algur, Removal of phenol from water by membrane-immobilized enzymes: Part I. Dead-end filtration, J. Membr. Sci. 206 (2002) 361–373.
[10] M. M. Mahlambi, Polymerization of cyclodextrin-ionic liquid complexes for the removal of organic and inorganic contaminants from water, University of Johannesburg, South Africa, 2007.
[11] J. Lin, W. Ye, H. Zeng, H. Yang, J. Shen, S. Darvishmanesh, P. Luis, A. Sotto, B. Van Der Bruggen, Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes, J. Membr. Sci. 477 (2015) 183–193.
[12] J. Lin, C. Y. Tang, W. Ye, S. Sun, S. H. Hamdan, A. Volodin, C. Van Haesendonck, A. Sotto, P. Luis, and B. Van Der Bruggen, Unraveling flux behavior of superhydrophilic loose nanofiltration membranes during textile wastewater treatment, J. Membr. Sci. 493 (2015) 690–702.
[13] J. Lin, W. Ye, J. Huang, B. Ricard, M. Baltaru, B. Greydanus, S. Balta, J. Shen, M. Vlad, A. Sotto, P. Luis, and B. Van Der Bruggen, Toward resource recovery from textile wastewater: dye extraction, water and base/acid regeneration using a hybrid NF-BMED process, Sustain. Chem. Eng. 3 (2015) 1993–2001.
[14] J. Lin, C. Y. Tang, C. Huang, Y. Pan, W. Ye, J. Li, J. Shen, R. Van Den Broeck, J. Van Impe, A. Volodin, C. Van Haesendonck, A. Sotto, P. Luis, B. Van Der Bruggen, A comprehensive physico-chemical characterization of superhydrophilic loose nanofiltration membranes, J. Membr. Sci. 501 (2016) 1–14.
[15] V. Vatanpour, S. S. Madaeni, S. Zinadini, H. R. Rajabi, Development of ion imprinted technique for designing nickel ion selective membrane, J. Membr. Sci. 373 (2011) 36–42.
[16] L. C. Koh, W. Y. Ahn, M. M. Clark, Selective adsorption of natural organic foulants by polysulfone colloids: Effect on ultrafiltration fouling, J. Membr. Sci. 281 (2006) 472–479.
[17] N. Hu, J. Y. Yin, Q. Tang, Y. Chen, Comparative study of amphiphilic hyperbranched and linear polymer stabilized organo-soluble gold nanoparticles as efficient recyclable catalysts in the biphasic reduction of 4-nitrophenol, J. Polym. Sci. A. 49 (2011) 3826–3834.
[18] M. R. Kotte, M. Cho, M. S. Diallo, A facile route to the preparation of mixed matrix polyvinylidene fluoride membranes with in-situ generated polyethyleneimine particles, J. Membr. Sci. 450 (2014) 93–102.
[19] C. Zhou, Y. Shi, C. Sun, S. Yu, M. Liu, Thin film composite membranes formed by interfacial polymerization with natural material sericin and trimesoyl chloride for nanofiltration, J. Membr. Sci. 471 (2014) 381–391.
[20] M. Seiler, “Hyperbranched polymers: Phase behaviour and new applications in the field of chemical engineering, Fluid Phase Equilib. 241 (2006) 155–174.
[21] K. N. Han, B. Y. Yu, S. Y. Kwak, Hyperbranched poly(amidoamine)/polysulfone composite membranes for Cd(II) removal from water, J. Membr. Sci. 396 (2012) 83–91.
[22] D. M. Saad, E. M. Cukrowska, H. Tutu, Functionalisation of cross-linked polyethylenimine for the removal of As from mining wastewater, Water SA, 39 (2013) 257–264.
[23] W. Huang, J. N. Kuhn, C. K. Tsung, Y. Zhang, S. E. Habas, P. Yang, G. A. Somorjai, Dendrimer templated synthesis of one nanometer Rh and Pt particles supported on mesoporous silica: catalytic activity for ethylene and pyrrole hydrogenation, Nano Lett. 8 (2008) 2027–2034.
[24] S. J. Park, R. K. Cheedrala, M. S. Diallo, C. Kim, I. S. Kim, W. A. Goddard, Nanofiltration membranes based on polyvinylidene fluoride nanofibrous scaffolds and crosslinked polyethyleneimine networks, J. Nano Part. Res.14 (2014) 33–46.
[25] X. Fang, J. Li, X. Li, X. Sun, J. Shen, W. Han, L. Wang, Polyethyleneimine, an effective additive for polyethersulfone ultrafiltration membrane with enhanced permeability and selectivity, J. Membr. Sci. 476 (2015) 216–223.
[26] D. Qu, J. Wang, D. Hou, Z. Luan, B. Fan, and C. Zhao, Experimental study of arsenic removal by direct contact membrane distillation, J. Hazard. Mater. 163 (2009) 874–879.
[27] H. Yoo, S. Kwak, Surface functionalization of PTFE membranes with hyperbranched poly(amidoamine) for the removal of Cu2+ ions from aqueous solution, J. Membr. Sci. 448 (2013) 125–134.
[28] T. Hong, A. Ngo, T. Xuan, D. T. Tran, T. Xuan, Removal of heavy metal ions in water using modified polyamide thin film composite, Int. J. Sci. Technol. 3 (2017) 91–103.
[29] D. Wu, Y. Huang, S. Yu, D. Lawless, X. Feng, Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride, J. Membr. Sci. 472 (2014) 141–153.
[30] J. Zhu, Q. Zhang, S. Li, S. Zhang, Fabrication of thin film composite nanofiltration membranes by coating water soluble disulfonated poly(arylene ether sulfone) and in situ crosslinking, Desalination 387 (2016) 25–34.
[31] X. Zhao, J. Ma, Z. Wang, G. Wen, J. Jiang, F. Shi, L. Sheng, Hyperbranchedpolymer functionalized multi-walled carbon nanotubes for poly(vinylidene fluoride) membranes: from dispersion to blended fouling-control membrane, Desalination 303, (2012) 29–38.
[32] C. Liao, J. Zhao, P. Yu, H. Tong, Y. Luo, Synthesis and characterization of low content of different SiO2 materials composite poly(vinylidene fluoride) ultrafiltration membranes, Desalination 285 (2012) 117–122.
[33] L. Wang, S. Ji, N. Wang, R. Zhang, G. Zhang, J. Li, One-step self-assembly fabrication of amphiphilic hyperbranched polymer composite membrane from aqueous emulsion for dye desalination, J. Membr. Sci. 452 (2014) 143–151.
[34] D. Zhao, Y. Yu, J. P. Chen, Zirconium/polyvinyl alcohol modified flat-sheet polyvinylidene fluoride membrane for decontamination of arsenic: Material design and optimization, study of mechanisms, and application prospects, Chemosphere 155 (2016) 630–639.
[35] B. Rajaeian, A. Rahimpour, M. O. Tade, S. Liu, Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles, Desalination 313 (2013) 176–188.
[36] H. S. Lee, S. J. Im, J. H. Kim, H. J. Kim, J. P. Kim, B. R. Min, Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles, Desalination 219 (2008) 48–56.
[37] S.P. Malinga, O.A. Arotiba, R. W. M. Krause, S.F. Mapolie, M.S. Diallo, BB. Mamba. Cyclodextrin-dendrimer functionalized polysulfone membrane for the removal of humic acid in water. J. Appl. Polym. Sci. 130 (2013) 4428-4439.
[38] Z. X. Low, Q. Liu, E. Shamsaei, X. Zhang, H. Wang, Preparation and characterization of thin-film composite membrane with nanowire-modified support for forward osmosis process, Membranes 5 (2015) 136–149.
[39] S. P. Malinga , O. A. Arotiba , R. W. M. Krause , S. F. Mapolie , M. S. Diallo and B. B. Mamba. Nanostructured β-cyclodextrin-hyperbranched polyethyleneimine (β-CD-HPEI) embedded in polysulfone membrane for the removal of humic acid from Water, Sep. Sci. Technol. 48 (2013) 2724-2734.
[40]S. Simone, F. Galiano, M. Faccini, M. E. Boerrigter, C. Chaumette, E. Drioli, A. Figoli, Preparation and characterization of polymeric-hybrid PES/TiO2 hollow fiber membranes for potential applications in water treatment, Fibers 5 (2017) 1-19.
[41] S. P. Sun, T. A. Hatton, T. S. Chung, Hyperbranched polyethyleneimine induced cross-linking of polyamide-imide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin, Environ. Sci. Technol. 45 (2011) 4003–4009.
[42] A. Schulze, M. Went, and A. Prager, Membrane functionalization with hyperbranched polymers, Materials 9 (2016) 1-11.
[43] K. E-sik and B. Deng. Fabrication of polyamide thin-film nano-composite (PATFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purification. J. Membr. Sci. 375 (2011) 46-54.
[44] Y. C. Chiang, Y. Z. Hsub, R. C. Ruaan, C. J. Chuang, K. L. Tung, Nanofiltration membranes synthesized from hyperbranched polyethyleneimine, J. Membr. Sci. 326 (2009) 19–26.
[45] H. Wang, N. Shao, S. Qiao, and Y. Cheng, Host–guest chemistry of dendrimer–cyclodextrin conjugates: selective encapsulations of guests within dendrimer or cyclodextrin cavities revealed by NOE NMR techniques, J. Phys. Chem. B 116 (2012) 11217–11224.
[46] M. Obaid, O. A. Fadali, B. H. Lim, H. Fouad, N. A. M. Barakat, Super-hydrophilic and highly stable in oils polyamide-polysulfone composite membrane by electrospinning, Mater. Lett. 138 (2015) 196–199.
[47] M. D. Abràmoff, P. J. Magalhães, S. J. Ram, Image processing with ImageJ, J. Biophotonics Int. 11 (2003) 36–41.
[48] B. S. Mbuli, S. D. Mhlanga, B. B. Mamba, E. N. Nxumalo, Fouling resistance and physicochemical properties of polyamide thin-Film composite membranes modified with functionalized cyclodextrins, Adv. Polym. Tech. 36 (2016) 249-260.
[49] X. Z. Wei, L. P. Zhu, H. Y. Deng, Y. Y. Xu, B. K. Zhu, Z. M. Huang, New type of nanofiltration membrane based on crosslinked hyperbranched polymers, J. Membr. Sci. 323 (2008) 278–287.
[50] M. Dalwani, Thin film composite nanofiltration membranes for extreme conditions, University of Twente, Netherlands, 2011.
[51] N. R. Nicomel, K. Leus, K. Folens, P. Van Der Voort, G. Du Laing, Technologies for arsenic removal from water: current status and future perspectives, Int. J. Environ. Res. Public. Health. 13 (2015) 1–24.
[52] J. Song, M. Zhang, A. Figoli, Y. Yin, B. Zhao, X. M. Li, and T. He, Arsenic removal using a sulfonated poly(ether ether ketone) coated hollow fiber nanofiltration membrane, Environ. Sci. Water Res.Technol. 1 (2015) 839–845.
[53] P. Shah, C. N. Murthy, Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal, J. Membr. Sci. 437 (2013) 90–98.
[54] J. Heffron, M. Marhefke, B. K. Mayer, Removal of trace metal contaminants from potable water by electrocoagulation, Scientific Reports 6 (2016) 1–9.
[55] E. Saljoughi, S. M. Mousavi, Preparation and characterization of novel polysulfone nanofiltration membranes for removal of cadmium from contaminated water, Sep. Sci. Technol. 90 (2012) 22–30.
[56] Z. Thong, G. Han, Y. Cui, J. Gao, T. S. Chung, S. Y. Chan, S. Wei, Novel nanofiltration membranes consisting of a sulfonated pentablock copolymer rejection layer for heavy metal removal, Environ. Sci. Technol. 48 (2014) 13880–13887.