A Review of Membrane Technology for Integrated Forest Biorefinery

Document Type: Review Paper

Authors

1 Department of chemical engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada P7B 5E1

2 Department of Chemical Engineering, Lakehead University, Canada

3 Department of Chemical Engineering, lakehead University, Canada

4 College of Geography and Environmental Science, Zheijiang Normal University, Jinhua, Zheijiang, PRChina

Abstract

More recently, the concept of integrated forest biorefinery (IFBR) has received much attention as a promising solution for the struggling forest industry in North America and Europe to overcome its difficult financial period and competes globally. This new business paradigm offers a broad range of potentially attractive products, from bioenergy to value-added green organic chemicals in addition to traditional pulp and paper products. However, it also implies adoption of different types of appropriate separation technologies. Recent advancements in membrane technologies and their valuable applications have resulted in numerous breakthroughs in IFBR. The review of the implementation of membrane technologies for the separation of the value-added chemicals in the integrated forest biorefinery could contribute to the knowledge required for the large-scale adoption of membrane technologies in the forest industry. This paper aims to present a state-of-the-art review on the applications and the recent advancements of membrane technologies in IFBR, and their capacities to produce value-added chemicals and bioenergy. The emphasis is given to the focus areas of IFBR, particularly: the recovery of value-added chemicals, black liquor concentration, product recovery from Kraft evaporator condensates, tall oil recovery, inorganic and inorganic compounds recovery, fermentation inhibitors removal, enzyme recovery, biobutanol and bioethanol production and recovery. The paper also discusses the challenges and opportunities of this new business paradigm of forest industries.

Graphical Abstract

A Review of Membrane Technology for Integrated Forest Biorefinery

Highlights

Membrane technologies for value-added chemicals recovery and bioenergy
production in IFBR are reviewed
• Challenges and opportunities of membrane technologies in IFBR are discussed
• Membrane fouling and its control in IFBR are highlighted

Keywords

Main Subjects


[1] Van Heiningen, Converting a kraft pulp mill into an integrated forest biorefinery, Pulp Pap. Can. 107 (2006) 38-43.

[2] B. Thorp, Biorefinery offers industry leaders business model for major change, Pulp Pap. 79 (2005) 35-39.

[3] G. Bell, S. Schuck, G. Jungmeier, M. Wellisch, C. Felby, H. Jørgensen, H. Stichnothe, M. Clancy, I. De Bari, S. Kimura, R. van Ree, IEA Bioenergy Task42 Biorefining, Wageningen: IEA Bioenergy, 2014.

[4] T.E. Amidon, C.D. Wood, A.M. Shupe, Y. Wang, M. Graves, S. Liu, Biorefinery: Conversion of woody biomass to chemicals, energy and materials, J. Biobased Mater. Bio. 2 (2008) 100-120.

[5] Y. He, D.M. Bagley, K.T. Leung, S.N. Liss, B.Q. Liao, Recent advances in membrane technologies for biorefining and bioenergy production, Biotechnol. Adv. 30 (2012) 817-858.

[6] P. McKendry, Energy production from biomass (Part 1): Overview of biomass, Bioresour. Technol. 83 (2002) 37-46.

[7] O. Wallberg, A.S. Jönsson, R. Wimmerstedt, Fractionation and concentration of kraft black liquor lignin with ultrafiltration, Desalination154 (2003) 187-199.

[8] O. Wallberg, A.S. Jönsson, Separation of lignin in kraft cooking liquor from a continuous digester by ultrafiltration at temperatures above 100°C, Desalination 195 (2006) 187-200.

[9] M. Pauly, S. Gille, L. Liu, N. Mansoori, A. de Souza, A. Schultink, G. Xiong, Hemicellulose biosynthesis, Planta 238 (2013) 627-642.

[10] T. Persson, A.S. Jonsson, Fouling of ultrafiltration membranes during isolation of hemicelluloses in the forest industry, Scholarly Res. Exchange (2009) 1-7.

[11] A. Ebringerová, Structural diversity and application potential of hemicelluloses, Macromol. Symp. 232 (2005) 1-12.

[12] S. Willför, K. Sundberg, M. Tenkanen, B. Holmbom, Spruce-derived mannans–A potential raw material for hydrocolloids and novel advanced natural materials, Carbohyd. Polym. 72 (2008) 197-210.

[13] H.J. Huang, S. Ramaswamy, U.W. Tschirner, B.V. Ramarao, A review of separation technologies in current and future biorefineries, Sep. Purif. Technol. 62 (2008) 1-21.

[14] H. Krawczyk, A.S. Jönsson, Separation of dispersed substances and galactoglucomannan in thermomechanical pulp process water by microfiltration, Sep. Purif. Technol. 79 (2011) 43-49.

[15] P. Fatehi, N. Yonghao, Integrated forest biorefinery-prehydrolysis/dissolving pulping process, in: J.Y. Zhu, X. Zhang, X.J. Pan (Eds), Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass, American Chemical Society, Washington, DC, 2011, pp. 475-506.

[16] T. Persson, M. Matusiak, G. Zacchi, A.S. Jönsson Extraction of hemicelluloses from process water from the production of Masonite, Desalination 199 (2006) 411-412.

[17] A. Andersson, T. Persson, G. Zacchi, H. Stålbrand, A.S. Jönsson, Comparison of diafiltration and size-exclusion chromatography to recover hemicelluloses from process water from thermomechanical pulping of spruce, Appl. Biochem. Biotech. 137 (2007) 971-983.

[18] A. Hasan, R. Yasarla, B.V. Ramarao, T.E. Amidon, Separation of lignocellulosic hydrolyzate components using ceramic microfilters, J. Wood Chem. Technol. 31 (2011) 357-383.

[19] H. Krawczyk, P. Oinonen, A.S. Jönsson, Combined membrane filtration and enzymatic treatment for recovery of high molecular mass hemicelluloses from chemithermomechanical pulp process water, Chem. Eng. J. 225 (2013) 292-299.

[20] T. Persson, A.K. Nordin, G. Zacchi, A.S. Jönsson, Economic evaluation of isolation of hemicelluloses from process streams from thermomechanical pulping of spruce, Appl. Biochem. Biotechnol. 137-140 (2007) 741-752.

[21] T. Persson, H. Krawczyk, A.K. Nordin, A.S. Jönsson, Fractionation of process water in thermomechanical pulp mills, Bioresour. Technol. 101 (2010) 3884-3892.

[22] A. Maartens, E.P. Jacobs, P. Swart, UF of pulp and paper effluent: Membrane fouling-prevention and cleaning, J. Membr. Sci. 209 (2002) 81-92.

[23] M. Mänttäri, A. Pihlajamäki, M. Nyström, Comparison of nanofiltration and tight ultrafiltration membranes in the filtration of paper mill process water, Desalination 149 (2002) 131-136.

[24] E. Koivula, M. Kallioinen, S. Preis, L. Testova, H. Sixta, M. Mänttäri, Evaluation of various pretreatment methods to manage fouling in ultrafiltration of wood hydrolysates, Sep. Purif. Technol. 83 (2011) 50-56.

[25] T. Persson, A.S. Jönsson, Isolation of hemicelluloses by ultrafiltration of thermomechanical pulp mill process water—Influence of operating conditions, Chem. Eng. Res. Design 88 (2010) 1548-1554.

[26] A.S. Jönsson, A.K. Nordin, O. Wallberg, Concentration and purification of lignin in hardwood kraft pulping liquor by ultrafiltration and nanofiltration, Chem. Eng. Res. Design 86 (2008) 1271-1280.

[27] M. Al Manasrah, M. Kallioinen, H. Ilvesniemi, M. Mänttäri, Recovery of galactoglucomannan from wood hydrolysate using regenerated cellulose ultrafiltration membranes, Bioresour. Technol. 114 (2012) 375-381.

[28] A. Jun, U.W. Tschirner, Z. Tauer, Hemicellulose extraction from aspen chips prior to kraft pulping utilizing kraft white liquor, Biomass Bioenerg. 37 (2012) 229-236.

[29] H. Liu, H. Hu, M.S. Jahan, M.M. Baktash, Y. Ni, Purification of hemicelluloses in pre-hydrolysis liquor of kraft-based dissolving pulp production process using activated carbon and ion-exchange resin adsorption followed by nanofiltration, J. Biobased Mater.  Bio. 8 (2014) 325-330.

[30] O. Ajao, M. Le Hir, M. Rahni, M. Marinova, H. Chadjaa, O Savadogo, Concentration and detoxification of kraft prehydrolysate by combining nanofiltration with flocculation, Ind. Eng. Chem. Res. 54 (2015) 1113-1122.

[31] A. Teella, G.W. Huber, D.M. Ford, Separation of acetic acid from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration and reverse osmosis membranes, J. Membr. Sci. 378 (2011) 495-502.

[32] E. Sjöman, M. Mänttäri, M. Nyström, H. Koivikko, H. Heikkilä, Separation of xylose from glucose by nanofiltration from concentrated monosaccharide solutions, J. Membr. Sci. 292 (2007) 106-115.

[33] R. Schlesinger, G. Götzinger, H. Sixta, A. Friedl, M. Harasek, Evaluation of alkali resistant nanofiltration membranes for the separation of hemicellulose from concentrated alkaline process liquors, Desalination 192 (2006) 303-314.

[34] O. Ajao, M. Rahni, M. Marinova, H. Chadjaa, O. Savadogo, Retention and flux characteristics of nanofiltration membranes during hemicellulose prehydrolysate concentration, Chem. Eng. J. 260 (2015) 605-615.

[35] J. Shen, I. Kaur, M.M. Baktash, Z. He, Y. Ni, A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process, Bioresour. Technol. 127 (2013) 59-65.

[36] L. Ahsan, M.S. Jahan, Y. Ni, Recovering/concentrating of hemicellulosic sugars and acetic acid by nanofiltration and reverse osmosis from prehydrolysis liquor of kraft based hardwood dissolving pulp process, Bioresour. Technol. 155 (2014) 111-115.

[37] Q. Wang, S. Liu, G. Yang, J. Chen, Improvement membrane filterability in nanofiltration of prehydrolysis liquor of kraft dissolving pulp by laccase treatment, Bioresour. Technol. 181 (2015) 124-127.

[38] M.J. González-Muñoz, V. Santos, J.C. Parajó, Purification of oligosaccharides obtained from Pinus pinaster hemicelluloses by diafiltration, Desalin. Water Treat. 27 (2011) 48-53.

[39] M.J. González-Muñoz, S. Rivas, V. Santos, J.C. Parajó, Fractionation of extracted hemicellulosic saccharides from Pinus pinaster wood by multistep membrane processing, J. Membr. Sci. 428 (2013) 281-289.

[40] T. Faravelli, A. Frassoldati, G. Migliavacca, E. Ranzi, Detailed kinetic modeling of the thermal degradation of lignins, Biomass Bioenerg. 34 (2010) 290-301.

[41] W. Boerjan, J. Ralph, M. Baucher, Lignin biosynthesis, Annu. Rev. Plant Biology 54 (2003) 519-546.

[42] L. Kang, W. Wang, Y.Y. Lee, Bioconversion of kraft paper mill sludges to ethanol by SSF and SSCF, Appl. Biochem. Biotech. 161 (2010) 53-66.

[43] J. Sameni, S. Krigstin, D. dos Santos Rosa, A. Leao, M. Sain, Thermal characteristics of lignin residue from industrial processes, BioResources 9 (2013) 725-737.

[44] E.K. Pye, Industrial lignin production and applications, in: B. Kamm, P. R. Gruber and M. Kamm (Eds.), Biorefineries-Industrial Processes and Products: Status Quo and Future Directions, Wiley-VCH Verlag GmbH, Weinheim, 2008, pp. 165-200.

[45] A. Arkell, J. Olsson, O. Wallberg, Process performance in lignin separation from softwood black liquor by membrane filtration, Chem. Eng. Res. Design 92 (2014) 1792-1800.

[46] O. Wallberg, A.S. Jönsson, Influence of the membrane cut-off during ultrafiltration of kraft black liquor with ceramic membranes, Chem. Eng. Res. Design 81 (2003) 1379-1384.

[47] A. Toledano, A. Garcia, I. Mondragon, J. Labidi, A. García, Lignin separation and fractionation by ultrafiltration, Sep. Purif Technol. 71 (2010) 38-43.

[48] A. Holmqvist, O. Wallberg, A.S. Jönsson, Ultrafiltration of kraft black liquor from two Swedish pulp mills, Chem. Eng. Res. Design 83 (2005) 994-999.

[49] A. Keyoumu, R. Sjödahl, G. Henriksson, M. Ek, G. Gellerstedt, M.E. Lindström, Continuous nano- and ultra-filtration of kraft pulping black liquor with ceramic filters: A method for lowering the load on the recovery boiler while generating valuable side-products, Ind. Crop. Prod. 20 (2004) 143-150.

[50] A. Dafinov, J. Font, R. Garcia-Valls, Processing of black liquors by UF/NF ceramic membranes, Desalination 173 (2005) 83-90.

[51] A.S. Jönsson, O. Wallberg, Cost estimates of kraft lignin recovery by ultrafiltration, Desalination 237 (2009) 254-267.

[52] E. Strand, M. Kallioinen, S.P. Reinikainen, A. Arkell, M. Mänttäri, Multivariate data examination in evaluation of the effect of the molecular mass of lignin and hemicelluloses on ultrafiltration efficiency, Sep. Purif. Technol. 144 (2015) 146-152.

[53] K. Servaes, A. Varhimo, M. Dubreuil, M. Bulut, P. Vandezande, M. Siika-aho, J. Sirviö, K. Kruus, W. Porto-Carrero, B. Bongers, Purification and concentration of lignin from the spent liquor of the alkaline oxidation of woody biomass through membrane separation technology, Ind. Crop. Prod. (2016) in press.

[54] N. Westerberg, H. Sunner, H. Gunnar, H. Mikaela, L. Martin, A. Rasmuson, Separation of galactoglucomannans, lignin and lignin-carbohydrate complexes from hot-water-extracted Norway spruce by cross-flow filtration and adsorption chromatography, Bioresources 7 (2012) 4501-4516.

[55] A. Toledano, L. Serrano, A.M. Balu, R. Luque, A. Pineda, J. Labidi, Fractionation of organosolv lignin from olive tree clippings and its valorization to simple phenolic compounds, ChemSusChem 6 (2013) 529-536.

[56] J. Fernández-Rodríguez, A. García, A. Coz, J. Labidi, Spent sulphite liquor fractionation into lignosulphonates and fermentable sugars by ultrafiltration, Sep. Purif. Technol. 152 (2015) 172-179.

[57] P. Valto, J. Knuutinen, R. Alén, Overview of analytical procedures for fatty and resin acids in the papermaking process, Bioresources 7 (2012) 6041-6076.

[58] L. Puro, M. Kallioinen, M. Mänttäri, M. Nyström, Evaluation of behavior and fouling potential of wood extractives in ultrafiltration of pulp and paper mill process water, J. Membr. Sci. 368 (2011) 150-158.

[59] T.E. Amidon, C.D. Wood, S.J. Liu, Membrane Separation: An essential component for a Wood-based biorefinery, 3rd International Conference on Eucalyptus Pulp (2007) 1-11.

[60] T. Leiviskä, J. Rämö, H. Nurmesniemi, R. Pöykiö, T. Kuokkanen, Size fractionation of wood extractives, lignin and trace elements in pulp and paper mill wastewater before and after biological treatment, Water Res. 43 (2009) 3199-3206.

[61] K.F. Kilulya, T.A. Msagati, B.B. Mamba, J.C. Ngila, T. Bush, Ionic liquid–liquid extraction and supported liquid membrane analysis of lipophilic wood extractives from dissolving-grade pulp, Chromatographia 75 (2012) 513-520.

[62] P.C. Pinto, I.F. Mota, J.M. Loureiro, A.E. Rodrigues, Membrane performance and application of ultrafiltration and nanofiltration to ethanol/water extract of Eucalyptus bark, Sep. Purif. Technol. 132 (2014) 234-423.

[63] X. Liu, J. Zheng, C. Li, C. Shan, J. Ren, J. Liu, Making suitable fuel for coal burning boiler from black liquor using ceramic ultrafiltration membrane, Proceedings of the Asia-Pacific Power and Energy Engineering Conference (2011) 1-3.

[64] M. Peter, G. Rahul, M. Vivek, Sacrificial protective coating materials that can be regenerated In Situ to enable high-Performance membranes, Teledyne Scientific Company, U.S. DOE Advanced Manufacturing Office Program, Review Meeting Washington, D.C. (2015).

[65] S. Adnan, M. Hoang, H. Wang, B. Bolto, Z. Xie, Recent trends in research, development and application of membrane technology in the pulp and paper industry, Appita J. 63 (2010) 235-241.

[66] M. Paleologou, T. Radiotis, L. Kouisni, N. Jemaa, T. Mahmood, T. Browne, D. Singbeil, New and emerging biorefinery technologies and products for the canadian forest industry, J. Sci. Technol. Forest Prod. Proc. 1 (2011) 6-14.

[67] N. Jemaa, M. Paleologou, B. O'connor, Process for treating pulp mill condenstates using a hollow fiber contactor, United States patent, US No. 8,349,130 (2013).

[68] N. Sharma, S. Nainwal, S. Jain, S. Jain, Emerging biorefinery technologies for Indian forest industry to reduce GHG emissions, Ecotox. Environ. Safe. 121 (2015) 105-109.

[69] I. Blume, R.W. Baker, Treatment of evaporator condensates by pervaporation, United States patent, US No. 4952751, Membrane Technology & Research Inc. (1990).

[70] P. Savage, F. Piroozmand, Use of reverse osmosis membranes to treat evaporator clean condensate, United States patent, US No. 6,110,376 (2000).

[71] K. Minami, K. Okamura, S. Ogawa, T. Naritomi, Continuous anaerobic treatment of wastewater from a kraft pulp mill, J. Ferment. Bioeng. 71 (1991) 270-274.

[72] A. Alsuliman, Membrane bioreactor treating kraft evaporative condensate at a high temperature under different operational conditions and turpentine shockloads, PhD dissertation, University of British Columbia (2003).

[73] T. McGinnis, J. Svarz, R. Gabel, Additives for improving separation of crude tall oil soap from black liquor and analytical methods of measurement of their performance, Tappi Pulping Conference (1998) 919-934.

[74] H.A. Fremont, Process for enhancing recovery of tall oil soap from black liquor, United States patent, US No. 4,142,967 (1979).

[75] O. Mansour, A. Nagaty, M.M. El-Khatib, Separation of alkali from silica-rich black liquor, Indian J. Chem. Technol. 5 (1998) 7-15.

[76] H. Niemi, J. Lahti, H. Hatakka, S. Kärki, S. Rovio, M. Kallioinen, M. Mänttäri, M. Louhi‐Kultanen, Fractionation of organic and inorganic compounds from black liquor by combining membrane separation and crystallization, Chem. Eng. Technol. 34 (2011) 593-598.

[77] M. Mänttäri, J. Lahti, H. Hatakka, M. Louhi-Kultanen, M. Kallioinen, Separation phenomena in UF and NF in the recovery of organic acids from kraft black liquor, J. Membr. Sci. 490 (2015) 84-91.

[78] S. Hellstén, J. Lahti, J. Heinonen, M. Kallioinen, M. Mänttäri, T. Sainio, Purification process for recovering hydroxy acids from soda black liquor, Chem. Eng. Res. Design 91 (2013) 2765-2774.

[79] S.G. Kwon, S.W. Park, D.K. Oh, Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor, J. Biosci. Bioeng. 101 (2006) 13-18.

[80] I.S. Rafiqul, A.M. Sakinah, Processes for the production of xylitol—A review, Food Rev. Int. 29 (2013) 127-156.

[81] R.P. Affleck, Recovery of xylitol from fermentation of model hemicellulose hydrolysates using membrane technology, Master dissertation, Virginia Polytechnic Institute and State University (2000).

[82] A.P. Borole, J.R. Mielenz, T.A. Vishnivetskaya, C.Y. Hamilton, Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells, Biotechnol. Biofuels 2 (2009) 1-14.

[83] W. Parawira, M. Tekere, Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review, Crit. Rev. Biotechnol. 31 (2011) 20-31.

[84] P. Wei, L.H. Cheng, L. Zhang, X.H. Xu, H.L. Chen, C.J. Gao, A review of membrane technology for bioethanol production, Renew. Sustain. Energ. Rev. 30 (2014) 388-400.

[85] B. Han, W. Carvalho, L. Canilha, S.S. Da Silva, J.B. e Silva, J.D. McMillan, S.R. Wickramasinghe, Adsorptive membranes vs. resins for acetic acid removal from biomass hydrolysates, Desalination 193 (2006) 361-366.

[86] S. Liu, T.E. Amidon, C. David Wood, Membrane filtration: concentration and purification of hydrolyzates from biomass, J. Biobased Mater. Bio. 2 (2008) 121-134.

[87] J.H. Choi, K. Fukushi, K. Yamamoto, A study on the removal of organic acids from wastewaters using nanofiltration membranes, Sep. Purif. Technol. 59 (2008) 17-25.

[88] Y.H. Weng, H.J. Wei, T.Y. Tsai, W.H. Chen, T.Y. Wei, W.S. Hwang, C.P. Wang, C.P. Huang, Separation of acetic acid from xylose by nanofiltration, Sep. Purif. Technol. 67 (2009) 95-102.

[89] B. Qi, J. Luo, X. Chen, X. Hang, Y. Wan, Separation of furfural from monosaccharides by nanofiltration, Bioresour. Technol. 102 (2011) 7111-7118.

[90] M.D. Afonso, Assessment of NF and RO for the potential concentration of acetic acid and furfural from the condensate of eucalyptus spent sulphite liquor, Sep. Purif. Technol. 99 (2012) 86-90.

[91] F. Zhou, C. Wang, J. Wei, Separation of acetic acid from monosaccharides by NF and RO membranes: performance comparison, J. Membr. Sci. 429 (2013) 243-251.

[92] A.K. Gautam, T.J. Menkhaus, Surface modified reverse osmosis and nano-filtration membranes for the production of biorenewable fuels and chemicals, MRS Proceedings 1502 (2013) mrsf12-1502-t10-06.

[93] W.D. Mores, J.S. Knutsen, R.H. Davis, Cellulase recovery via membrane filtration, Appl. Biochem. Biotechnol. 91-93 (2001) 297-309.

[94] R. Hobden, Effectiveness of ultrafiltration on the recovery and reuse of liquid enzymes in the production of biodiesel, PhD dissertation, Appalachian State University (2013).

[95] J.S. Knutsen, R.H. Davis, Cellulase retention and sugar removal by membrane ultrafiltration during lignocellulosic biomass hydrolysis, Appl. Biochem. Biotechnol. 113-116 (2003) 585-599.

[96] S. Szélpál, O. Poser, M. Ábel, Enzyme recovery by membrane separation method from waste products of the food industry, Acta Technica Corviniensis-Bulletin of Engineering 6 (2013) 149-154.

[97] C. Abels, K. Thimm, H. Wulfhorst, A.C. Spiess, M. Wessling, Membrane-based recovery of glucose from enzymatic hydrolysis of ionic liquid pretreated cellulose, Bioresour. Technol. 149 (2013) 58-64.

[98] P. Ylitervo, W. Doyen, M.J. Taherzadeh, Fermentation of lignocellulosic hydrolyzate using a submerged membrane bioreactor at high dilution rates, Bioresour. Technol. 164 (2014) 64-69.

[99] G. Lewandowicz, W. Bialas, B. Marczewski, D. Szymanowska, Application of membrane distillation for ethanol recovery during fuel ethanol production, J. Membr. Sci. 375 (2011) 212-219.

[100] P. Ylitervo, J. Akinbomi, M.J. Taherzadeh, Membrane bioreactors’ potential for ethanol and biogas production: A review, Environ. Technol. 34 (2013) 1711-1723.

[101] W.W. Ding, Y.T. Wu, X.Y. Tang, L. Yuan, Z.Y. Xiao, Continuous ethanol fermentation in a closed‐circulating system using an immobilized cell coupled with PDMS membrane pervaporation, J. Chem. Technol. Biot. 86 (2011) 82-87.

[102] C. Chen, X. Tang, Z. Xiao, Y. Zhou, Y. Jiang, S. Fu, Ethanol fermentation kinetics in a continuous and closed-circulating fermentation system with a pervaporation membrane bioreactor, Bioresour. Technol. 114 (2012) 707-710.

[103] S. Fan, S. Chen, X. Tang, Z. Xiao, Q. Deng, P. Yao, Z. Sun, Y. Zhang, C. Chen, Kinetic model of continuous ethanol fermentation in closed-circulating process with pervaporation membrane bioreactor by Saccharomyces cerevisiae, Bioresour. Technol. 177 (2015) 169-175.

[104] C. Chen, L. Wang, G. Xiao, Y. Liu, Z. Xiao, Q. Deng, P. Yao, Continuous acetone–butanol–ethanol (ABE) fermentation and gas production under slight pressure in a membrane bioreactor, Bioresour. Technol. 163 (2014) 6-11.

[105] R. Jiraratananon, A. Chanachai, R.Y. Huang, D. Uttapap, Pervaporation dehydration of ethanol–water mixtures with chitosan/hydroxyethylcellulose (CS/HEC) composite membranes: I. Effect of operating conditions, J. Membr. Sci. 195 (2002) 143-151.

[106] A. Dobrak, A. Figoli, S. Chovau, F. Galiano, S. Simone, I.F. Vankelecom, E. Drioli, B. van der Bruggen, Performance of PDMS membranes in pervaporation: Effect of silicalite fillers and comparison with SBS membranes, J. Colloid Interf. Sci. 346 (2010) 254-64.

[107] S.L. Schmidt, M.D. Myers, S.S. Kelley, J.D. McMillan, N. Padukone, Evaluation of PTMSP membranes in achieving enhanced ethanol removal from fermentations by pervaporation, Biotechnol. Fuels Chem. 63-65 (1997) 469-482.

[108] P. Ylitervo, C.J. Franzén, M.J. Taherzadeh, Continuous ethanol production with a membrane bioreactor at high acetic acid concentrations, Membranes 4 (2014) 372-387.

[109] M. Di Luccio, C.P. Borges, T.L. Alves, Economic analysis of ethanol and fructose production by selective fermentation coupled to pervaporation: Effect of membrane costs on process economics, Desalination 147 (2002) 161-166.

[110] P. Kaewkannetra, N. Chutinate, S. Moonamart, T. Kamsan, T.Y. Chiu, Experimental study and cost evaluation for ethanol separation from fermentation broth using pervaporation, Desalin. Water Treat. 41 (2012) 88-94.

[111] J.P. Crawshaw, J.H. Hills, Sorption of ethanol and water by starchy materials, Ind. Eng. Chem. Res. 29 (1990) 307-309.

[112] D. Hou, G. Dai, H. Fan, H. Huang, J. Wang, An ultrasonic assisted direct contact membrane distillation hybrid process for desalination, J. Membr. Sci. 476 (2015) 59-67.

[113] C.K. Chiam, R. Sarbatly, Vacuum membrane distillation processes for aqueous solution treatment—A review, Chem. Eng. Process. 74 (2013) 27-54.

[114] H. Udriot, S. Ampuero, I.W. Marison, U. Von Stockar, Extractive fermentation of ethanol using membrane distillation, Biotechnol. Lett. 11 (1989) 509-514.

[115] R.L. Calibo, M. Matsumura, H. Kataoka, Continuous ethanol fermentation of concentrated sugar solutions coupled with membrane distillation using a PTFE module, J. Ferment. Bioeng. 67 (1989):40-45.

[116] M. Barancewicz, M. Gryta, Ethanol production in a bioreactor with an integrated membrane distillation module, Chem. Pap. 66 (2012) 85-91.

[117] L.M Vane, A review of pervaporation for product recovery from biomass fermentation processes, J. Chem. Technol. Biot. 80 (2005) 603-629.

[118] Y.K. Ong, G.M. Shi, N.L. Le, Y.P. Tang, J. Zuo, S.P. Nunes, T.S. Chung, Recent membrane development for pervaporation processes, Prog. Polym. Sci. 57 (2016) 1-31.

[119] L.Y. Jiang, Y. Wang, T.S. Chung, X.Y. Qiao, J.Y. Lai, Polyimides membranes for pervaporation and biofuels separation, Prog. Polym. Sci., 34 (2009) 1135-1160.

[120] M. Nomura, T. Yamaguchi, S.I. Nakao, Ethanol/water transport through silicalite membranes, J. Membr. Sci. 144 (1998) 161-171.

[121] T. Ikegami, H. Yanagishita, D. Kitamoto, H. Negishi, K. Haraya, T. Sano, Concentration of fermented ethanol by pervaporation using silicalite membranes coated with silicone rubber, Desalination 149 (2002) 49-54.

[122] M. Nomura, T. Bin, S.I. Nakao, Selective ethanol extraction from fermentation broth using a silicalite membrane, Sep. Purif. Technol. 27 (2002) 59-66.

[123] K. Sato, K. Sugimoto, T. Nakane, Synthesis of industrial scale NaY zeolite membranes and ethanol permeating performance in pervaporation and vapor permeation up to 130°C and 570kPa, J. Membr. Sci. 310 (2008) 161-173.

[124] A. Thongsukmak, K.K. Sirkar, Pervaporation membranes highly selective for solvents present in fermentation broths, J. Membr. Sci. 302 (2007) 45-58.

[125] A. Thongsukmak, K.K. Sirkar, Extractive pervaporation to separate ethanol from its dilute aqueous solutions characteristic of ethanol-producing fermentation processes, J. Membr. Sci. 329 (2009) 119-129.

[126] M. Tsuyumoto, A. Teramoto, P. Meares, Dehydration of ethanol on a pilot-plant scale, using a new type of hollow-fiber membrane, J. Membr. Sci. 133 (1997) 83-94.

[127] D.J. O’Brien, L.H. Roth, A.J. McAloon, Ethanol production by continuous fermentation–pervaporation: a preliminary economic analysis, J. Membr. Sci. 166 (2000) 105-111.

[128] T. Leppäjärvi, I. Malinen, D. Korelskiy, J. Kangas, J. Hedlund, J. Tanskanen, Pervaporation of ethanol/water mixtures through a high-silica MFI membrane: Comparison of different semi-empirical mass transfer models, Period. Polytech. Chem. 59 (2015) 111-123.

[129] G. Zhang, J. Li, N. Wang, H. Fan, R. Zhang, S. Ji, Enhanced flux of polydimethylsiloxane membrane for ethanol permselective pervaporation via incorporation of MIL-53 particles, J. Membr. Sci. 492 (2015) 322-330.

[130] N. Wang, J. Liu, J. Li, J. Gao, S. Ji, J.R. Li, Tuning properties of silicalite-1 for enhanced ethanol/water pervaporation separation in its PDMS hybrid membrane, Micropor. Mesopor. Mat. 201 (2015) 35-42.

[131] H. Yan, J. Li, H. Fan, S. Ji, G. Zhang, Z. Zhang, Sonication-enhanced in situ assembly of organic/inorganic hybrid membranes: Evolution of nanoparticle distribution and pervaporation performance, J. Membr. Sci. 481 (2015) 94-105.

[132] H.S. Samanta, S.K. Ray, Separation of ethanol from water by pervaporation using mixed matrix copolymer membranes, Sep. Purif. Technol. 146 (2015) 176-186.

[133] L. Chai, H. Li, X. Zheng, J. Wang, J. Yang, J. Lu, D. Yin, Y. Zhang, Pervaporation separation of ethanol–water mixtures through B-ZSM-11 zeolite membranes on macroporous supports, J. Membr. Sci. 491 (2015) 168-175.

[134] M.A. Sosa, D.A. Paredes, J.C. Basílico, B. van der Bruggen, J. Espinosa, Screening of pervaporation membranes with the aid of conceptual models: An application to bioethanol production, Sep. Purif. Technol. 146 (2015) 326-341.

[135] S. Nai, X. Liu, W. Liu, B. Zhang, Ethanol recovery from its dilute aqueous solution using Fe-ZSM-5 membranes: Effect of defect size and surface hydrophobicity, Micropor. Mesopor Mat. 215 (2015) 46-50.

[136] S. Yi, B. Qi, Y. Su, Y. Wan, Effects of fermentation by-products and inhibitors on pervaporative recovery of biofuels from fermentation broths with novel silane modified silicalite-1/PDMS/PAN thin film composite membrane, Chem. Eng. J. 279 (2015) 547-554.

[137] X. Zhuang, X. Chen, Y. Su, W. Cao, Y. Wan, Improved performance of PDMS/silicalite-1 pervaporation membranes via designing new silicalite-1 particles, J. Membr. Sci. 493 (2015) 37-45.

[138] C. Fu, D. Cai, S. Hu, Q. Miao, Y. Wang, P. Qin, Z. Wang, T. Tan, Ethanol fermentation integrated with PDMS composite membrane: An effective process, Bioresour. Technol. 200 (2016) 648-657.

[139] C. Xue, F. Liu, M. Xu, J. Zhao, L. Chen, J. Ren, F. Bai, S.T. Yang, A novel in situ gas stripping‐pervaporation process integrated with acetone‐butanol‐ethanol fermentation for hyper n‐butanol production, Biotechnol. Bioeng. 113 (2016) 120-129.

[140] C. Xue, J.B. Zhao, L.J. Chen, F.W. Bai, S.T. Yang, J.X. Sun, Integrated butanol recovery for an advanced biofuel: Current state and prospects, Appl. Microbiol. Biot. 98 (2014) 3463-3474.

[141] P. Fatehi, Production of biofuels from cellulose of woody biomass, in: T. van de Ven, J. Kadla, (Eds.), Cellulose-Biomass Conversion, InTech, 2013, pp. 45–74.

[142] L.J. Visioli, H. Enzweiler, R.C. Kuhn, M. Schwaab, M.A. Mazutti, Recent advances on biobutanol production, Sustain. Chem. Process. 2 (2014) 1-9.

[143] G. Liu, W. Wei, W. Jin, Pervaporation membranes for biobutanol production, Sustain. Chem. Eng. 2 (2013) 546-560.

[144] S.Y. Lee, J.H. Park, S.H. Jang, L.K. Nielsen, J. Kim, K.S. Jung, Fermentative butanol production by Clostridia, Biotechnol. Bioeng. 101 (2008) 209-228.

[145] W. Van Hecke, P. Vandezande, S. Claes, S. Vangeel, H. Beckers, L. Diels, H. De Wever, Integrated bioprocess for long-term continuous cultivation of Clostridium acetobutylicum coupled to pervaporation with PDMS composite membranes, Bioresour. Technol. 111 (2012) 368-377.

[146] M. Setlhaku, S. Heitmann, A. Górak, R. Wichmann, Investigation of gas stripping and pervaporation for improved feasibility of two-stage butanol production process, Bioresour. Technol. 136 (2013) 102-108.

[147] W. van Hecke, T. Hofmann, H. De Wever, Pervaporative recovery of ABE during continuous cultivation: Enhancement of performance, Bioresour. Technol. 129 (2013) 421-429.

[148] J. Marszałek, P. Rdzanek, W. Kamiński, Improving performance of pervaporation membranes for biobutanol separation, Desalin. Water Treat. 56 (2015) 3535-3543.

[149] S. Heitmann, J. Krings, P. Kreis, A. Lennert, W.R. Pitner, A. Górak, M.M. Schulte, Recovery of n-butanol using ionic liquid-based pervaporation membranes, Sep. Purif. Technol. 97 (2012) 108-114.

[150] C. Xue, D. Yang, G. Du, L. Chen, J. Ren, F. Bai, Evaluation of hydrophobic micro-zeolite-mixed matrix membrane and integrated with acetone-butanol-ethanol fermentation for enhanced butanol production, Biotechnol. Biofuels 8 (2015) 1-9.

[151] H. Fan, N. Wang, S. Ji, H. Yan, G. Zhang, Nanodisperse ZIF-8/PDMS hybrid membranes for biobutanol permselective pervaporation, J. Mater. Chem. 2 (2014) 20947-20957.

[152] T. Ikegami, H. Negishi, S. Nakayama, G. Kobayashi, K. Sakaki, Pervaporative concentration of biobutanol from ABE fermentation broths by Clostridium saccharoperbutylacetonicum using silicone rubber-coated silicalite-1 membranes, Sep. Purif. Technol. 132 (2014) 206-212.

[153] A. Garcia, E.L. Iannotti, J.L. Fischer, Butanol fermentation liquor production and separation by reverse osmosis, Biotechnol. Bioeng. 28 (1986):785-791.

[154] R.A. Diltz, T.V. Marolla, M.V. Henley, L. Li, Reverse osmosis processing of organic model compounds and fermentation broths, Bioresour. Technol. 98 (2007) 686-695.

[155] M. Ito, I. Morita, S. Yamane, K. Yamada, Butanol manufacturing method, United States patent, US No. 9,056,805 (2015).

[156] S. Fan, Z. Xiao, Y. Zhang, X. Tang, C. Chen, W. Li, Q. Deng, P. Yao, Enhanced ethanol fermentation in a pervaporation membrane bioreactor with the convenient permeate vapor recovery, Bioresour. Technol. 155 (2014) 229-234.

[157] H. Wu, X.P. Chen, G.P. Liu, M. Jiang, T. Guo, W.Q. Jin, P. Wei, D.W. Zhu, Acetone–butanol–ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 and in situ recovery by PDMS/ceramic composite membrane, Bioproc. Biosyst. Eng. 35 (2012) 1057-1065.

[158] E.J. Jeon, A.S. Kim, Y.T. Lee, Pervaporation of butanol/water mixtures using siloxane polymer/ceramic composite membranes, Desalin. Water Treat. 48 (2012) 17-26.

[159] H.W. Yen, Z.H. Chen, I.K. Yang, Use of the composite membrane of poly (ether-block-amide) and carbon nanotubes (CNTs) in a pervaporation system incorporated with fermentation for butanol production by Clostridium acetobutylicum, Bioresour. Technol. 109 (2012) 105-109.

[160] S. Heitmann, V. Krüger, D. Welz, P. Lutze, Experimental investigation of pervaporation membranes for biobutanol separation, J. Membr. Sep. Technol. 2 (2013) 245-262.

[161] S. Liu, G. Liu, X. Zhao, W. Jin, Hydrophobic-ZIF-71 filled PEBA mixed matrix membranes for recovery of biobutanol via pervaporation, J. Membr. Sci. 446 (2013) 181-188.

[162] G.G. Paradis, D.P. Shanahan, R. Kreiter, H.M. van Veen, H.L. Castricum, A. Nijmeijer, J.F. Vente, From hydrophilic to hydrophobic HybSi® membranes: A change of affinity and applicability, J. Membr. Sci. 428 (2013) 157-162.

[163] H. Tan, Y. Wu, T. Li, Pervaporation of n‐butanol aqueous solution through ZSM‐5‐PEBA composite membranes, J. Appl. Polym. Sci. 129 (2013) 105-112.

[164] J. Niemistö, W. Kujawski, R.L. Keiski, Pervaporation performance of composite poly (dimethyl siloxane) membrane for butanol recovery from model solutions, J. Membr. Sci. 434 (2013) 55-64.

[165] Z. Dong, G. Liu, S. Liu, Z. Liu, W. Jin, High performance ceramic hollow fiber supported PDMS composite pervaporation membrane for bio-butanol recovery, J. Membr. Sci. 450 (2014) 38-47.

[166] D. Liu, G. Liu, L. Meng, Z. Dong, K. Huang, W. Jin, Hollow fiber modules with ceramic-supported PDMS composite membranes for pervaporation recovery of bio-butanol, Sep. Purif. Technol. 146 (2015) 24-32.

[167] Z.B. Gönder, S. Arayici, H. Barlas, Treatment of pulp and paper mill wastewater using utrafiltration process: Optimization of the fouling and rejections, Ind. Eng. Chem. Res. 51 (2012) 6184-6195.

[168] L. Puro, J. Tanninen, M. Nyström, Analyses of organic foulants in membranes fouled by pulp and paper mill effluent using solid-liquid extraction, Desalination 143 (2002) 1-9.

[169] A. Weis, M.R. Bird, M. Nyström, C. Wright, The influence of morphology, hydrophobicity and charge upon the long-term performance of ultrafiltration membranes fouled with spent sulphite liquor, Desalination 175 (2005) 73-85.

[170] C. Chen, S. Mao, J. Wang, J. Bao, H. Xu, W. Su, H. Dai, Application of ultrafiltration in a paper mill: Process water reuse and membrane fouling analysis, Bioresources 10 (2015) 2376-2391.

[171] L. Puro, M. Kallioinen, M. Mänttäri, G. Natarajan, D.C. Cameron, M. Nyström, Performance of RC and PES ultrafiltration membranes in filtration of pulp mill process waters, Desalination 264 (2010) 249-255.

[172] D.J. Carlsson, M.M. Dal-Cin, P. Black, C.N. Lick, A surface spectroscopic study of membranes fouled by pulp mill effluent, J. Membr. Sci. 142 (1998) 1-11.

[173] M. Kallioinen, S.P. Reinikainen, J. Nuortila-Jokinen, Membrane foulant characterization in pulp and paper applications, 5th International Membrane Science and Technology Conference (2003) 10-14.

[174] C.H. Ko, C. Fan, Enhanced chemical oxygen demand removal and flux reduction in pulp and paper wastewater treatment using laccase-polymerized membrane filtration, J. Hazard. Mater. 181(2010) 763-770.

[175] M. Mänttäri, M. Al Manasrah, E. Strand, H. Laasonen, S. Preis, L. Puro, C. Xu, V. Kisonen, R. Korpinen, M. Kallioinen, Improvement of ultrafiltration performance by oxidation treatment in the recovery of galactoglucomannan from wood autohydrolyzate, Sep. Purif. Technol. 149 (2015) 428-436.

[176] X. Chen, Q. Yang, C.L. Si, Z. Wang, D. Huo, Y. Hong, Z. Li, Recovery of oligosaccharides from prehydrolysis liquors of poplar by microfiltration/ultrafiltration membranes and anion exchange resin, Sustain. Chem. Eng. 4 (2016) 937-943.

[177] J. Thuvander, A.S. Jönsson, Extraction of galactoglucomannan from thermomechanical pulp mill process water by microfiltration and ultrafiltration—Influence of microfiltration membrane pore size on ultrafiltration performance, Chem. Eng. Res. Design 105 (2016) 171-176.

[178] K. Xie, H.J. Lin, B. Mahendran, D.M. Bagley, K.T. Leung, S.N. Liss, B.Q. Liao, Performance and fouling characteristics of a submerged anaerobic membrane bioreactor for kraft evaporator condensate treatment, Environ. Technol. 31 (2010) 511-521.

[179] B.Q. Liao, K. Xie, H.J. Lin, D. Bertoldo, Treatment of kraft evaporator condensate using a thermophilic submerged anaerobic membrane bioreactor, Water Sci. Technol. 61 (2010) 2177-2183.

[180] W.J. Gao, M.N. Han, X. Qu, C. Xu, B.Q. Liao, Characteristics of wastewater and mixed liquor and their role in membrane fouling, Bioresour. Technol. 128 (2013) 207-214.

[181] W.J. Gao, M.N. Han, C.C. Xu, B.Q. Liao, Y. Hong, J. Cumin, M. Dagnew, Performance of submerged anaerobic membrane bioreactor for thermomechanical pulping wastewater treatment, J. Water Process Eng. 13 (2016) 70-78.