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• Brings awareness of the eff ect of four types of noise on the membrane characterization results.
• Provides valuable information on the accurate design of Constant-Volume systems.
• Provides solutions to reduce the noise level and therefore obtain more accurate results.
• Compares two analysis methods, time lag method and nonlinear regression method.
• Provides a sensitivity map showing the correlation between solubility and diff usivity.
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1. Introduction

Although signifi cant progress has been made to extend the “upper 
bound” of membrane performance, i.e. the well-known permeability-
selectivity trade-off , the main obstacle for a wider implementation of 
membrane technology is the lack of high-performance membrane materials 
[1-3]. To delve the causes and to overcome this challenge, studies on the 

relationships between the dynamics of penetrant transportation inside a 
membrane and their transport properties are of primary importance. The 
time-lag method, developed by Daynes [4] and Barrer [5], is commonly 
used in membrane characterization as an integral approach [6]. However, the 
graphical determination of the time lag from experimental pressure data lacks
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The time-lag method, using a gas permeation experiment, is currently the most popular method for determining the membrane properties: diff usivity coeffi  cient and permeability 
coeffi  cient, and from which the solubility coeffi  cient can be calculated. In this investigation, the impact of systematic, random (noise), resolution and extrapolation errors associated 
with gas permeation experiments on the determination of the membrane properties using the time-lag method is investigated. A comprehensive error analysis for each type of errors 
and their combination is presented. Random and resolution errors have a greater impact on the determination of the time lag for low rates of downstream pressure accumulation which 
can be alleviated by increasing the capacity parameter. Increasing the feed pressure lowers the resolution errors, but has no eff ect on random errors. Extrapolation errors associated 
with the time-lag method, which increase with time, can be reduced by increasing the number of evaluation points and the length of the evaluation window. Because of their strong 
correlation, it is diffi  cult to decouple solubility and diff usivity coeffi  cients accurately without using the time-lag. A judicious balance between data precision, the drop in the driving 
force and the duration of an experiment must be considered in the design of a constant-volume membrane system and in the selection of experimental operating conditions to minimize 
the impact of pressure variability. The necessity of a small capacity parameter for the accurate determination of membrane properties needs to be reconsidered in the presence of 
experimental noise.
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accuracy and repeatability [7-9]. The use of personal computers in data 

acquisition and analysis [9-11] has significantly improved the methods of 

analysis and relative accuracy [12]. Personal computers allow researchers to 
plot the whole set of pressure data during the span of an experiments instead 

of relying only on a small portion of the data points at steady state. 

Nevertheless, a detailed discussion on errors caused by digital devices and 
computer software as well as the impact of experimental conditions and 

experimental data analysis on the level of errors is rarely found in the 

literature. The objective of this investigation is to bring greater awareness to 
researchers and practitioners in the field of membranes that the disagreement 

reported for some homogeneous membrane properties [13-16] could be the 

result of noise affecting the membrane characterization method. In existing 
literature [14, 17-19], noise affecting experiments or data analysis was either 

ignored or only mentioned qualitatively. This paper attempts to provide a 

comprehensive and quantitative analysis on the effect of noise and other 
experimental errors in the determination of membrane properties. Another 

objective was to assess the many sources of potential errors in automated 

constant-volume membrane permeation systems and to discuss the impact of 
experimental conditions and experimental data analysis on these errors and 

their implication on the determination of the membrane time lag and 

membrane properties. 
Gas permeation experiments are typically conducted in a constant volume 

(CV) membrane system [18, 20] which consists of two fixed-volume 

compartments separated by a membrane cell module. The system is normally 
evacuated prior to each experiment. The permeation process is initiated by 

performing a step change in the gas pressure at the upstream side of the 

membrane. The progressive permeation of the gas through the membrane 
leads to a pressure accumulation at the downstream side of the membrane 

which is recorded via a high precision absolute pressure transducer. The 

volume of the upstream compartment is typically large to ensure a constant 
feed pressure during the experiment, whereas the volume of the downstream 

compartment, which is generally smaller than that of the upstream 

compartment, represents a compromise between maintaining a relatively 
constant downstream pressure during the experiment and the sensitivity of the 

pressure transducer. Figure 1 illustrates a typical downstream pressure rise 

curve plotted versus time and how the downstream time lag (d) is estimated 
by extrapolating a linear portion of the pressure rise curve to the time axis. 

The extrapolation requires selecting a proper length of an evaluation time 

window (W) and a number of evaluation points (NP). Typically, the 
evaluation should be performed at least after 3-4 times the actual time lag to 

ensure that the permeation process has come to quasi steady-state [21-25]. 

However, in this investigation, the extrapolations are performed using a 
personal computer throughout an experiment to access the propagation 

magnitude and trend of the errors. 
 

 

 

 
 

Fig. 1. Progress of a typical time-lag gas permeation experiment showing the 

downstream pressure rise curve plotted versus time and illustration of the 

extrapolation necessary to determine the time lag. 

 
 

 

In the conventional time-lag analysis, the time lag is inversely 
proportional to the membrane diffusivity coefficient (D): 

 
2

6
d

L

D
  (1) 

 

where L is the membrane thickness. 

One of the important assumptions of the conventional time-lag method is 

that the amount of permeate gas accumulating in the downstream receiver is 

small enough to have a negligible effect on the driving force across the 
membrane and the permeation process can be approximated under ideal 

boundary conditions (Eq. 2) for which analytical solutions are available. Ideal 

boundary conditions are specified under the assumptions that: (a) prior to 
starting the experiment, the system is under complete vacuum such that the 

concentration is zero throughout the membrane; (b) the permeation 

experiment starts by subjecting the membrane to a step change in the 
upstream pressure of gas and the pressure is maintained constant throughout 

the experiment; and (c) the marginal accumulation of gas at the downstream 

side of the membrane is negligible. 
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where C is the concentration of the permeating gas in the membrane and p0 is 

the constant pressure in the upstream chamber. However, in real experiments, 

these conditions can only be approximated as the time-lag method requires 
their violation and, as a result, gas permeation in a CV system follows more 

realistic boundary conditions (Eq. 3) where the accumulation of permeated 
gas molecules in the downstream reservoir leads to a decrease of the driving 

force. It can be shown that a finite downstream volume with downstream 

pressure rise can affect the time-lag determination [21, 26-28]. 
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where pd(t) is the time-dependent pressure accumulation in the downstream 
chamber. The boundary condition 3(b) still assumes here that the upstream 

pressure remains constant throughout the permeation process, which is 

reasonable when using a large upstream reservoir. The magnitude of the 
impact of the downstream pressure increase on the time lag is proportional to 

the capacity parameter (η) [10, 11, 21, 26]: 
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where A is the cross sectional area of the membrane, R is the universal gas 

constant, T is the temperature and Vd is the volume of the downstream 
reservoir. 

A number of researchers [7, 8, 12, 18, 22] have attempted to develop 

analytical solutions for membranes subjected to real boundary conditions to 
embed the effect of the decrease in the driving force. However, the available 

solutions are semi-analytical and cumbersome. To gain a better understanding 

of the gas permeation process and the impact of the boundary conditions, in 
the absence of effective analytical solutions, numerical methods were used to 

simulate the real experimental process and to predict the behaviour of gas 

separation membranes with linear sorption under various boundary conditions 
[29, 30]. 

Taveira et al. [21] studied the effect of the capacity parameter on the 

determination of the diffusivity coefficient and concluded that η (inversely 
proportional to Vd) should be small to reduce the effect of the decrease in the 

driving force. However, this conclusion might only be applicable to a noise-

free environment and should not be used in the design of membrane systems 
without a careful analysis because the existence of experimental variability 

can have a major impact on the determination of the membrane properties. In 

other words, the necessity of a small capacity parameter for the accurate 
determination of these properties needs to be tested in the presence of 

experimental noise. 

In this investigation, the impact of the accuracy of measuring devices and 
data analysis on the determination of the membrane properties is analysed. 

The analyses are limited to the simplest case of a membrane in which gas 

sorption follows Henry’s law and the diffusivity coefficient is independent of 

concentration. The sources of variability in the experimental data are 

classified into four types of errors: systematic, random, resolution and 

extrapolation errors. The effect of the capacity parameter (η), the length of the 
evaluation window (W) and the number of points (NP) used to extrapolate to 

the time-axis on the accuracy of the estimated time lag is carefully analysed. 

Results obtained by the traditional time-lag method, where only a subset of 
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experimental points is used, are compared with those obtained with a 

nonlinear regression method which uses the complete range of data of the 

downstream pressure. 

 

 

2. Theoretical background 
 

The transport of a gas through a membrane, in which the diffusion 

coefficient of the permeating gas is constant, is described via Fick’s second 
law of diffusion: 
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where x is the distance from the upstream interface of the membrane and t is 

the permeation time. 

The solution of Eq. (5) subjected to the ideal initial and boundary 
conditions (Eq. 2) can be obtained using the method of separation of variables 

[32]. The analytical expression for the downstream pressure build-up (pd) 

due to gas molecules permeating through the membrane is given by: 
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At a long permeation time (tD/L2 > 1), the summation term vanishes 

resulting in a linear equation (Eq. (7)) which directly highlights the basis of 

the time-lag method. Indeed, the time lag, extrapolated from the pressure 
change on the downstream side of the membrane to intercept the time axis, is 

directly proportional to the reciprocal of the membrane diffusion coefficient, 

as shown in Eq. (1). 
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When the initial and boundary conditions are given by Eq. (3), the 

governing partial differential equation cannot be solved analytically; a 
numerical solution using finite differences can be used. This approach can be 

used for any set of the initial and boundary conditions [30, 32]. The accuracy 
of the numerical scheme was thoroughly evaluated using benchmark 

analytical solutions in a previous investigation [30]. A summary of the main 

discretized equations (Eq. (8)-(11)) using a uniform mesh size is as follows: 
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where Δx is the grid size used to discretize the membrane thickness. For an 
explicit numerical scheme and constant grid size, Eq. (9) is obtained for all 

interior mesh points within the membrane. 
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Eq. (8) could also be expressed using an implicit discretization numerical 

scheme for both variable and uniform mesh sizes. It was shown that all 
numerical schemes lead to very accurate results provided the number of 

discretization points is sufficiently large [30]. Eqs. (10a) and (10b) are used 

for the first and last grid points, respectively, to represent the two Dirichlet 
boundary conditions. 
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The pressure increase at the downstream side of the membrane is 
calculated by numerically integrating the concentration gradient via Eq. (11). 

If the initial boundary condition at the downstream side of the membrane is 

zero, Eq. (11) considers the accumulation of the permeating gas entering the 
downstream reservoir. The total downstream pressure build-up is therefore 

the summation of the instantaneous downstream pressure increases in the 

downstream reservoir. 
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where N is the number of grid points in the solution domain and n is the 
number of time increments Δt for which the simulation is performed.  

 

2.1. Error analysis and noise simulation 
 

In this investigation, potential sources of errors associated with a gas 

permeation experiment are investigated for their impact on the determination 
of the membrane properties. These errors can be classified into systematic 

errors, random errors (noise), resolution errors and extrapolation errors. The 

list of potential sources for the first three errors is presented in Table 1. 
Systematic errors are those having a nonzero mean that is caused by an 

inaccuracy of an observation or a measurement. A systematic error affects the 

experimental data independently of individual experiments, or may change 
from experiment to experiment, but is normally fixed during a given 

experiment. In this study, the systematic errors are comprised of the 

uncertainties in measuring the membrane thickness, the membrane area, the 
volumes of upstream and downstream reservoirs, the leak rate, the 

temperature and the downstream pressure transducer calibration error. These 

measurements are usually performed prior to performing an experiment.  
Random errors (random noise) have been considered in previous research 

[7, 33] as an observation variation. In computer-based experiments, most of 

these errors result from an instrument inherent accuracy and the unpredictable 
environment by which the experimental results are affected in an irregular and 

inconsistent way. Random errors can be influenced by some experimental 
parameters. These parameters are all parts of the capacity parameter (Eq. (4)). 

Resolution errors are due to the resolution limit of the analogue-to-digital 

converter (ADC), i.e. the finest information unit a data acquisition system 
with a given number of bits can provide. Both random errors and resolution 

errors can be significant when the accumulation rate of the permeating gas is 

low. 
At the end of a permeation experiment, the time lag is determined by 

extrapolating the pressure-time curve to intercept the time axis. Inaccuracy in 

the determination of the time lag may result during this process, so the error 
associated with this extrapolation is referred to as extrapolation error. The 

extrapolation error is not only affected by the level of random errors and ADC 

resolution errors, but it is also affected by the length of the evaluation time 
window, the number of evaluation points in the evaluation window and the 

time at which the extrapolation is performed. 

All in all, the accuracy of the obtained time lag is influenced by the 
combination of the systematic errors, the random errors, the resolution errors 

and the extrapolation errors. Systematic errors are impossible to detect. 

Nevertheless, they can be estimated and analysed statistically. On the other 
hand, random errors do not bias the downstream pressure difference, but 

reduce the overall confidence in an individual reported value. To measure the 

impact of the variability induced by random errors and resolution errors, 
artificial noise was added to the simulation data to better represent actual 

experimental data. The advantage of performing this analysis numerically is 

that the real values of the downstream pressure and time lag are known and 
can be used to assess the error in various simulations. 

 

 
Table 1 

Error sources. 
 

 

Classification Affected Parameters Measurement/Measuring Device 

Systematic errors Membrane thickness Micrometer with an accuracy of 1 m 

Membrane area Caliper ruler with an accuracy of 10 µm 

Upstream volume Calibrated volume and pressure 

transducers with accuracy of 0.12% 
Downstream volume 

Leak rate Leak test 

Temperature Thermocouple calibration 

Random errors Downstream pressure Pressure transducer accuracy 

Temperature Thermocouple accuracy 

Resolution errors Downstream pressure Pressure transducer and data acquisition 

system 
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2.1.1. Random noise generation 

Random errors are normally assumed to follow a Gaussian distribution 

characterized by a mean value (µ) and a standard deviation (). In this 
investigation, numerical simulations were performed to investigate the impact 

of random errors in the determination of the time lag. The variability in 

measured data due to random errors was simulated numerically by Gaussian 
noise as given by Eqs. (12) and (13). 
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where ∆pʹd is the simulated downstream pressure build-up with a random 

noise, δ(z) is the centred probability density function of a Gaussian random 

variable z. In this case, the mean value μ was set to 0 and the standard 
deviation σ was constant for a given numerical experiment. 

 

2.1.2. Resolution error generation 
The pressure in the downstream reservoir is measured with a pressure 

transducer and the recorded signal has an inherent variability resulting in ∆pʹd 

as given by Eq. (12). The available noisy pressure measurement is then 
processed through an analogue-to-digital converter (ADC) to provide the 

corresponding number to the computer. The number output from the ADC 

can only be a multiple of the minimum resolution of the ADC. The pressure 
recorded by the computer is proportional to the number read by the computer 

and the calibration factor as shown in Eq. (14). 
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where 
dp   is the recorded downstream pressure accumulation that contains 

the random Gaussian noise and ADC resolution errors. This is the pressure 

signal that is available to the data processing software. 
dpN

is the number 

provided by the ADC corresponding to the noisy downstream pressure data 

∆pʹd , a is an integer value corresponding to the number of bits of the ADC 

(16 in this investigation) and 
max,dp is the maximum pressure that the 

pressure transducer can measure and, if properly calibrated, corresponds to 
the maximum number that the ADC can provide. 

In this investigation, the resolution error of the ADC was also simulated 

to accurately represent all the steps involved in the data acquisition process 
and in the determination of the time-lag. 

 

2.2. Nonlinear regression 
 

The traditional method for the determination of the time lag resorts to a 

limited portion of the downstream pressure rise curve to perform the required 
extrapolation to the time axis. When a numerical model is available, an 

alternative method to obtain the membrane properties is to fit the variation of 

the pressure change in the downstream reservoir as a function of time using a 

nonlinear least squares method [34]. By minimizing the sum of squares of the 

differences between the experimental data and the numerical model, the 

optimal combination of S and D can be obtained. The nonlinear regression 
method has three advantages in diminishing the noise effect: 1) it uses the 

whole range of pressure data instead of only the quasi-steady state data; 2) 

many powerful algorithms are available to find an optimal solution; and 3) it 
overcomes extrapolation error by obtaining the diffusivity coefficient directly 

without extrapolating the time lag. However, although this alternative can 

reduce the effect of the experimental noise, an accurate recovery of the 
membrane properties from the original pressure data may still be challenging 

given the strong correlation that exists between S and D. The mean relative 

sum of squares is calculated and serves as a metrics for assessing the 
performance of the nonlinear regression: 
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where   is the mean relative error (MSRE) between the predicted downstream 

pressure 
dp̂  and the experimental downstream pressure 

dp , n is the number 

of data points used in the regression. 
 

 

3. Experiments 

 
The main purpose of gas permeation experiments in this work was to 

access the resolution error of the downstream pressure transducer in the actual 

experiment and to compare it with the value simulated based on the 
specifications provided by the transducer’s manufacturer and to justify the 

applicability of the numerically generated noise. If the simulations can 

reproduce with a high fidelity the experimental gas permeation experiments, 
including the different types of noise, then it becomes possible to use the 

numerical gas permeation experiments to assess with confidence the impact 

of measuring devices and data analysis in the determination of gas membrane 
properties. 

The details of the CV system used in this work are described elsewhere 

[18, 20]. The design of the downstream compartment allows varying the 
volume for gas accumulation from 77.6×10-6 m3 to 1009.7×10-6 m3; at the 

same time, the effects of resistance to gas accumulation reported in ref. [35, 

36] are minimized. The absolute pressure transducer (MKS model 

627B11TBC1B) to monitor gas accumulation operates in a range of 0 to 1333 

Pa (10 torr), with an accuracy of 0.0133 Pa (0.0001 torr) and a maximum 

error of 0.12% of the pressure reading. This level of precision is typical of the 
best precision from pressure transducers currently available on the market. 

Prior to each experiment, the system is evacuated using a rotary vacuum 

pump (Edwards model RV3) for at least 48 h, and just before the experiment, 
leak tests for both upstream and downstream sides of the membrane are 

performed. During the leak tests, the vacuum pump is disconnected from the 

system and gas accumulation (if any) in the downstream reservoir is 
monitored for a period of time (from 20 minutes to 1 hour depending on the 

duration of the experiment). 

The membrane used in the tests was a solution-cast, high molecular 
polyphenylene oxide (PPO) film prepared by a spin-coating technique. The 

details of membrane preparation are described elsewhere [13]. Other relevant 

experimental parameters are summarized in Table 2. 
 

 

4. Results and discussion  

 

4.1. Systematic errors 
 

The potential sources of the systematic errors have been inventoried for 

the constant volume system used in this work. These systematic errors are 
presented in Table 2 along with their estimations considering the precision of 

the measuring devices and actual measurements. To assess the respective 

impact of these systematic errors, the relative percentage standard deviations 
of the calculated time lag from the real time lag under quasi-steady state was 

evaluated. To perform this evaluation via a simulated permeation experiment, 

all measured variables were kept constant at their nominal values except for 
one variable that was varied at a time upward and downward of its nominal 

value by the degree of uncertainty as given in Table 2. From the simulated 

downstream pressure rise curve, the time lag was estimated using the 
traditional time-lag method at a time corresponding to 5 times the nominal 

(actual) value of the time lag θd (considered as quasi-steady state) with a time 
window of 50 s with 100 pressure data points. 

Table 2 shows that realistically-estimated systematic errors for most of 

the variables of Table 2 have a very minor impact on the resulting time lag. 
The systematic error having the largest impact on the determination of the 

time lag with a potential variation of 17.5% results from the measurement of 

the membrane thickness using a micrometre calliper having a measurement 
accuracy of 1 μm. 

 

4.2. Random errors 
 

The variability of the temperature and the downstream pressure 

measurements is considered as sources of random errors while the digital 
discrete output of the analogue-to-digital (ADC) converter, part of the data 

acquisition system, gives rise to the resolution error. Random errors are 

inevitable and the accuracy of measuring instruments is usually provided in 
the instrument manufacturer specifications. 

 

4.2.1. Temperature-drift error 
An experimental gas membrane permeation experiment can take 

anywhere from a few minutes to several hours. During the course of an 

experiment, even if the system is well insulated, the recorded temperature 
may still vary slightly with time in addition to be subjected to inherent 

random errors. In this investigation, the temperature did not vary significantly 

and an average temperature was used in performing calculations.  
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Table 2 

Systematic error analysis. 
 

 

Parameters Equations Best estimate and uncertainty 
Time-lag error  

(t = 5 θd) 
Measurement 

Membrane thickness 
2.365

( 9) LL N
N


     

630 10 mL    

62 10 (6.67%)L m     
17.50%  

Micrometer with 

accuracy of 1  m  

Membrane area 

2.770
( 5)

2
4

DL N
N

D
A A

D


  

  
    

 

 

 

20.00125mA   

6 22 10 m  

(0.16%)

A     0.0008%  
Caliper ruler with 

accuracy of 0.00001m 

Upstream volume 

2 2 2

2 1 2 1

2 1 2 1

2
V V P P

V V P P

        
       

     

 

5 35.00 10 muV    

0.2078%
V

V


  

0.00076%  

Calibrated volume and 

pressure transducers with 

accuracy of 0.12% 

Downstream volume 

5 39.68 10 mdV    

0.2078%
V

V


  

0.00095%  

Leak rate p t LR     

4

5

2.67 10 Pa/s

6.67 10 Pa/s

u

d

LR

LR





 

 

 68.75 10 %  Leak test 

Temperature -- 298T K  1 KT   
92 10 %  Thermocouple 

 

 

To evaluate the error that is caused with a potential change in 
temperature, Eq. (15) was used. This equation states that for a constant 

volume of the permeating gas with a fixed number of moles, a variation of 

temperature will simply be perceived as a change in the gas permeation rate. 
 

2
  

 
   

 

d pV V dp pV dT
q

dt RT RT dt RT dt
 (15) 

 

where q (mol/s) is the molar permeation rate of the tested gas. The permeation 

rate is measured indirectly based on the pressure increase rate on the 
permeated side. The second term of the right-hand side of Eq. (15), referred 

here as the temperature-drift error in q, is directly proportional to the 

downstream pressure p. When the pressure on the permeated side is very low, 
the error is negligible compared to the first term of the right-hand equation, 

the original molar permeation rate. For this reason, most constant-volume 
time-lag experiments are ideally conducted in an initially highly evacuated 

system as it is the case in this investigation where perfect vacuum is assumed. 

 
4.2.2. Downstream pressure transducer random error 

A series of numerical experiments was performed to assess the impact of 

the magnitude of the random noise on the determination of the time lag. 
Resolution noise from the ADC will be considered in the next section. 

Simulations are performed under realistic boundary conditions where the 

driving force is decreasing due to the downstream pressure accumulation. The 
instantaneous downstream time lag was estimated continuously by 

extrapolating the pressure rise curve to the time axis using a 50 s moving 

window containing 100 uniformly distributed pressure data points. The results 
are presented in Figure 2 for three noise levels, having respectively pressure 

standard deviations  of 0.0001, 0.001 and 0.01 Pa. In Figure 2, the estimated 

instantaneous downstream time lag is plotted as a function of the 

dimensionless time (t/d). Results show that for a noise standard deviation of 

0.001 Pa or less, the time lag is estimated very accurately and the variation in 

its determination is small even at relatively large time. The current instrument 
used in our laboratory has an accuracy corresponding to a standard deviation 

 of 0.0012 Pa and therefore has sufficient accuracy to estimate with 

sufficient confidence the time lag. For a standard deviation of 0.01 Pa in the 
pressure noise level, a much greater variability in the estimation of the time 

lag is observed and this variability grows with time mainly due to the 

extrapolation error of noisy data to the time axis. Typically, it is 

recommended to perform the experiments for at least 3-4 actual time lags to 

ensure a quasi-steady-state permeation process [21-25]. 

To gain a better understanding of the impact of the different noise levels, 
a total of 100 simulations under the same conditions with random noise were 

performed and the standard deviations of the estimated instantaneous 

downstream time lag were calculated as a function of the dimensionless time 

(t/d) for each of the three noise levels ( = 0.0001, 0.001 and 0.01 Pa). 
Results for all levels of noise, presented in Figure 3, show that the standard 

deviation of the estimated time lag follows the same trend. The standard 

deviation of the estimation error of the time lag initially decreases with time 
and plateau at a minimum prior to increase continuously with time. The 

minimum corresponds to the rapid increase in the estimated time lag (see 

Figure 2). For the lowest noise level ( = 0.0001 Pa), the standard deviation 

of the error of the estimated time lag evaluated at 5d is 2.1%. If the level of 

noise is increased, the accuracy in the estimation of the time lag greatly 

deteriorates. For noise levels with a standard deviation of 0.001 and 0.01 Pa, 

the percentages of the estimation error of the time lag evaluated at 5d are 

23% and 218%, respectively. For the three noise levels, the expected accuracy 

in the estimated time lag is magnified with respect to the standard deviation of 
the measuring instrument. This magnification in the estimation of the time 

lag, due mainly to extrapolation errors (discussed in Section 4.5) of noisy 

data, increases with time. Figures 2 and 3 clearly show that the evaluation of 
the time lag at a large experimental time becomes more difficult and less 

accurate with a higher level of the pressure random noise. It is obviously 

important to ensure working with a high accuracy pressure transducer. 
 

 

 
 

Fig. 2. Estimation of the instantaneous downstream time lag d,t as a function of 

dimensionless time (t/d) for three different levels of Gaussian random noise 

corresponding to the accuracy of the pressure transducer. Evaluations were performed 

over a time window of 50 s containing 100 data points. d is the actual time lag value. 

Experimental conditions are shown in Table A.1. 
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Fig. 3. Variation of the standard deviations in the estimation of the instantaneous 

downstream time lag as a function of dimensionless time (t/A) due to pressure transducer 

accuracy for different Gaussian random noise levels ( = 0.0001, 0.001 and 0.01 Pa) 

based on 100 simulations for each noise level. Evaluations were performed over a time 

window of 50 s containing 100 uniformly-distributed data points. Experimental 

conditions are shown in Table A.1. 

 

 

4.3. Resolution error 

 

In the previous section, the estimation of the time lag was performed 
assuming that the noisy pressure signal could be available directly. It was 

assumed that no errors were caused by the resolution of the analogue-to-

digital converter. In this section, the impact of the resolution errors caused by 
the discrete nature of a digital-to-analogue converter (ADC) output signal is 

analysed. 

The sampled pressure signal that is recorded by the computer is the 
output of the pressure transducer that is affected by inherent random noise 

and the error resulting from the data acquisition and conversion through an 

ADC. The latter one leads to a resolution error due to the digital limit of the 
ADC of the data acquisition system. In this investigation, the range of the 

pressure transducer is 1333 Pa (10 torr) and its output voltage range is 0 - 

10V. For the current laboratory system, the input voltage range of the 16-bit 
ADC was set to 0-1 V range such that the effective ADC resolution (Eq. (14)) 

is 1.53×10-5 torr or 2.03×10-3 Pa. This high accuracy can only be obtained if 

the recording system upon converting the ADC digit to the corresponding 
pressure provides the proper number of significant digits to retain this high 

accuracy. It turns out that for the current experimental system; only four 

decimals can be reported such that the smallest recorded pressure unit is 0.013 
Pa (0.0001 torr). For this system, the ADC resolution error is thereby 

compounded with a truncation error. The observation of this additional 

truncation error points to the importance of carefully analyzing the data 
acquisition system to ensure the pressure signal is recorded with the highest 

possible precision. The resulting resolution error in the current experimental 

system is therefore 0.0001 torr or 0.013 Pa, which can be clearly observed in 
Figure 4a showing a segment of the actual permeation experiment. 

To perform representative simulated permeation experiments that are able 

to represent realistic error scenarios, the observed resolution was programmed 

for the downstream pressure accumulation curves. A simulated permeation 
experiment with ADC resolution errors, presented in Figure 4b, is a good 

representation of the actual permeation experiment. The pressure 

accumulation is recorded in a stepwise fashion and because random errors 
affect the pressure signal preceding the ADC, the recorded signal frequently 

jumps between two adjacent stages. 

To illustrate the impact of resolution errors, simulated permeation 
experiments were performed in the absence of random errors. The results of 

three simulated permeation experiments, performed at three different feed 

pressures (10, 100 and 1000 kPa) are presented in Figure 5 in terms of the 
estimated time lag. It is observed that the resolution errors lead to a 

significant variation of the estimated time lag at a lower feed pressure (10 

kPa). A low feed pressure gives rise to a lower rate of increase of the 
downstream pressure and the pressure signal spends a longer time at each 

pressure step and, if the estimation of the time lag is performed over a fixed 

time window, the extrapolation to the time-axis will be greatly affected. On 
the other hand, a higher feed pressure leads to a higher rate of increase of the 

downstream pressure and therefore lower resolution errors. In addition, as 

shown in Figure 5, a periodical behaviour on the estimation of the time-lag 
curves is observed. This cyclic effect is created by the extrapolations of the 

pressure curve data changing in a discrete fashion from one level to another 

caused by the resolution and truncation errors. This effect becomes significant 
for small pressure increase rates associated with lower feed pressure. In the 

case of a feed pressure of 10 kPa, this effect is very important and increases 

with time. 
 

 

 
 

Fig. 5. The variation in the estimation of the time lag as a function of the dimensionless 

time due to data acquisition error only in a single simulation. The data evaluation time 

sliding window is 50 s; 100 equidistant pressure data points are used for each evaluation. 

Estimated time lag is presented for three initial feed pressures: 10 kPa, 100 kPa and 1000 

kPa. Experimental conditions are shown in Table A.1.

 

 

 
 

 

Fig. 4. Downstream experimental pressure data (a) and simulated data (b) as recorded by the 16-bit ADC. The input of the ADC is the output voltage of the pressure transducer 

corresponding to the pressure signal affected by random errors ( = 0.002 Pa). 
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Fig. 6. Variation of the standard deviations in the estimation of the time lag as a function of time based on the downstream pressure signal for three capacity parameters (η = 10-4, 10-5 

and 10-6) and three levels of random noise (0.0001, 0.001 and 0.01 Pa). The standard deviations were calculated based on 100 simulations performed under real BC over a time window 

of 50 s containing 100 data points. The feed pressure was 100 kPa and a recording resolution of 0.013 Pa (0.0001 torr) prevailed. Experimental conditions are shown in Table A.1. 

 

 

 

4.4. Impact of experimental conditions on random and resolution errors 
 

Previous researches [21, 22, 26] suggested using a small capacity 

parameter (η) in designing permeation experiments in order to obtain a more 
accurate estimation of the time lag by minimizing the effect of the decrease in 

the driving force across the membrane. However, as it will be discussed in 

this section, the capacity parameter does not only impact the driving force, 
but also the noise level. In the definition of η given by Eq. (4), the membrane 

area (A), membrane thickness (L), temperature (T) and downstream volume 

(Vd) are factors that influence the overall noise level. Therefore, when the 
accuracy of instruments is fixed, the noise level in the estimation of the time 

lag can be controlled by carefully selecting the operating conditions under 

which permeation experiments are conducted. Of all the parameters in Eq. 
(4), the membrane area and the membrane thickness are considered fixed 

when a system is set up. The temperature is usually well within control and it 

is selected to correspond to the intended application temperature, which is 
very often the ambient temperature as it was the case in this investigation. 

Therefore, the effect of the capacity parameter on the noise level of the 

estimated time lag is mainly affected by the downstream volume. 
To illustrate the impact of the capacity parameter on the estimated time 

lag, permeation experiment simulations were performed for three different 

capacity parameters η: 10-4, 10-5 and 10-6. For each capacity parameter, 100 
simulations were carried out at three different random noise levels (0.01, 

0.001 and 0.0001 Pa) in order to observe the resulting variability in the 

estimation of the time lag. This variability is reported in Figure 6 in terms of 
the standard deviations of the estimated time lag. For this series of 

simulations, the resolution error was identical to the one described in the 

previous section for a feed pressure of 100 kPa. Results clearly show that for 

very low noise level ( = 0.0001 Pa) (see Fig 6a), the larger value of the 

capacity parameter (η = 10-4) leads to a small standard deviation,  1% at 

5A from the actual time lag. On the other hand, smaller capacity parameters 
(η = 0.00001 and 0.000001) lead to conspicuous variability in the estimated 

time lag with  equal approximately to 30% and 160%, respectively. In 

Figure 6a, the rugged plots are the result of the resolution errors, which 

induce a periodical effect on the estimation of the time lag. This effect is 
reduced when the capacity parameter is increased (η = 10-4 and 10-5) because 

larger rates of increase in the downstream pressure are prevailing. In addition, 

Figures 6b and c show that, when the input random noise level is increased, 
the errors in the estimated time lag are increased for all capacity parameters. 

The differences in  between the highest and the lowest capacity parameter 

also increase with the level of random noise. The difference in  between η = 

10-4 and η =10-5 at 5d is approximately 16% when the random noise level is 

0.0001 Pa, 500% when the random noise level is 0.001 Pa, 2650% when the 

random noise level is 0.01 Pa. 
 

4.5. Extrapolation errors 

 
Results presented in the preceding sections considered the two major 

sources of experimental errors: random errors and resolution errors. These 

two errors are associated with the physical instrumentation: pressure sensor 
and the data acquisition system. A range, referred in this investigation as a 

time window (W), of the noisy pressure data is used to find the straight line 

that best fits these experimental data. This linear best fit is then extrapolated 
to the time-axis to estimate the time lag. The factors that can lead to more or 

less extrapolation error in the estimation of the time lag are the level of 

random and resolution errors, the length of the time window, the number of 
points contained in the time window, the time at which the time-lag 

evaluation is made, the feed pressure, and the capacity parameter. In the 

limiting case where the pressure data are not affected by the noise and ideal 
boundary conditions prevail, the estimation of the time lag can be performed 

very accurately after a time corresponding to three time lags or more. Under 

this ideal case, the length of the time window, the number of data inside the 
time window and time of evaluation do not impact on the time-lag estimation 

and no significant extrapolation error would be observed. However, in 

permeation experiments where real boundary conditions prevail, extrapolation 
errors are inevitably presented due to random and resolution errors. In 

addition, for real boundary conditions, the pseudo-steady-state pressure curve 

will never become perfectly linear such that, even in the absence of noise, 
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extrapolation error would exist. 

In this investigation, to study the effect of extrapolation errors, three 

factors that are specific to extrapolation errors were considered: the length of 
the time window, the number of data points within the evaluation window, 

and the time at which the estimation of the time lag is performed. 100 

permeation experiment simulations were performed with a random noise level 
of 0.001 Pa for three different time window lengths W (25, 50 and 100 s) and 

three different numbers of data points within the time window NP (50, 100 

and 200). For each simulation, the time lag was estimated by extrapolating the 
downstream pressure rise curve to the time-axis and the standard deviation of 

the estimated time lag was calculated and used to assess the effect of each 

factor. Results of this series of simulations are presented in Figures 7-9, 
where it is clearly shown that the most significant factor contributing to the 

extrapolation error is the time at which the estimation of the time lag is 

performed. Indeed, the further in time the extrapolation is performed, the 
larger the variability in the estimated time lag will be. For example, for 100 

points in a 50 s time evaluation window (see Figure 7), the standard deviation 

of the estimated time lag is approximately 30% at 3A, 52% at 5A, and 130% 

at 10A. In Figure 7, for a length of the time window of 50 s, a larger number 

of data points used in the time window lead to a decrease in the variability of 

the estimated time lag at the same evaluation time. A larger number of points 
in a fixed window length have a filtering effect on the estimation of the time 

lag and its estimation variability is reduced. 

It is observed that using 200 evaluation data points in a 50 s time window 

leads to a time lag standard deviation at 5d of approximately 40% while a 

standard deviation of around 77% was observed for a number of evaluation 

points of 50. However, there is a limit at which rate pressure data can be 
acquired, such that extrapolation errors will always be present. 

 

 
 

 
 

Fig. 7  Variation of the standard deviation in the estimation of the time lag as a function 

of time based on the downstream pressure signal. The estimation was performed for three 

different numbers of evaluation data points NP (50, 100 and 200) per window and 

standard deviation is calculated based on 100 simulations. Evaluations were performed 

under real BC over a time window of 50 s, a noise level of 0.001 Pa and a capacity 

parameter η = 0.00001. Experimental conditions are shown in Table A.1. 

 

 
 

Figure 8 presents the standard deviation in the estimation of the time lag 

for three different lengths of the time window: 25, 50 and 100 s. Results 
clearly show that a larger time window gives an estimation of the time lag 

with less variability. At a time corresponding to 5A, the time lag standard 

deviations are approximately 110%, 52% and 27% with an evaluation 
window of 25, 50 and 100 s, respectively. However, it is not suggested to use 

an evaluation time window as large as possible to minimize the variability in 

the estimation of the time lag. Without noise, small evaluation windows are 
always preferred because they provide the least distortion. With noise, a 

proper window length has to be selected considering the trade-off between 

minimizing the noise effect and minimizing the distortion. Figure 9 shows the 
errors in the estimation of the time lag at 3θd and 5θd as a function of the 

length of the evaluation window with two different noise levels based on 100 

simulated permeation experiments. The experiments were performed under 
real BC with the evaluation window containing 100 data points. Results 

clearly show the distortion effect as the window length is increased and starts 
to encompass the initial region where the downstream pressure curve rise 

rapidly and to a much lesser extent the higher part of the curve where the 

pressure rise curve deviates from a straight line due to real boundary 

conditions. This distortion effect is obviously observed earlier when the 

midpoint of the evaluation window is located at 3θd as shown in Figure 9. At 
5θd, the distortion effect is delayed and the drop in the estimation of the time 

lag becomes only obvious at a window length of 150 s. 

 
 

 
 

Fig. 8. Variation of the standard deviations in the estimation of the time lag as a 

function of time using the downstream pressure signal for three different evaluation 

windows W (25, 50 and 100 s). 100 evaluations were performed under real BCs with 

100 data points within the window and a noise level of 0.001 Pa. Experimental 

conditions are shown in Table A.1. 

 
 

 

 
 

Fig. 9. Estimation of the time lag at 3θd and 5θd as a function of the length of 

the evaluation window with a noise level of 0.001 and 0.01 Pa. 100 evaluations 

were performed under real BC with 100 data points and a noise level of 0.001 

Pa. Experimental conditions are shown in Table A.1. 
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4.6. Nonlinear regression 

 

An alternative way to determine the solubility and diffusivity coefficients 
of the membrane is to use nonlinear regression where, instead of using a 

subset of downstream pressure data points in a certain evaluation time 

window to determine the time lag and thus diffusivity coefficient, the 
complete data set of the downstream pressure-time curve is used. By 

minimizing the mean square relative error (MSRE), which will be denoted as 

  (Eq. (15)) between the experimental data and the simulated data, the 

values of the solubility and diffusivity coefficients can in principle be 

estimated.  
To determine the sensitivity for the determination of solubility and 

diffusivity coefficients with respect to the downstream pressure rise curve, a 

large number of simulations were performed with different combinations of S 

and D to cover a relatively narrow range ( 5%) around their nominal values. 

The MSRE was calculated between the pressure data obtained with the 

nominal values of D and S (
4 3 12 23 10 /  , 4.2 10 /S mol m Pa D m s      ) and 

the pressure data obtained with the different combinations of S and D. The 

results of these simulations are presented in terms of contour plots without 
noise in Figure 10a and with noise (noise level is 0.01 Pa) in Figure 10b. The 

very strong correlation existing between parameters D and S is clearly 

illustrated in Figure 10 where a combination of the two parameters located on 
the diagonal leads to relatively lower values of the MSRE. As the set of 

parameters D and S moves away from the diagonal line, the MSRE increases 

rapidly. Figure 10b present similar contour plots of the MSRE when the noise 
level is 0.01 Pa. In this figure, not only the impact of the strong S-D 

correlation still exists giving elliptical contour lines, but the noise also 

increases significantly the MSRE values along the diagonal line. It can be 
concluded that with noise recovering real values of S and D becomes even 

more difficult. 
 

 

 
 

Fig. 10 Contour maps of the MSRE between the downstream pressure curve for the 

nominal S and D values and for a wide set of S and D in the vicinity ( 5%) of the 

nominal D-S set: (a) noise free and (b) 0.01 Pa. Nominal values are S = 310-4 

mol/m3Pa, D = 4.210-12 m2/s. Experimental conditions are shown in Table A.1. 

 

As it is already known, it is the membrane permeability coefficient that 

dictates the rate of ascent of the downstream pressure curve and in solution-

diffusion model, it is the product of solubility and diffusivity coefficients. As 
a result, it is difficult to decouple solubility and diffusivity coefficients 

accurately without using the time lag. If a nonlinear regression is used with 

noisy data, the recovery of membrane properties becomes even more difficult 
in addition to the correlation between S and D. However, the nonlinear 

regression may have some advantages over the time-lag method in complex 

transport models such as partial immobilization model and non-instantaneous 
equilibrium model since the x-axis extrapolation from pressure accumulation 

curve may have multi-plateaus and it does not directly indicate the time lags. 

Therefore, a combined usage of the two methods in membrane 
characterization is suggested in studying those models. 

 

 

5. Conclusions 

 

In a noise-free theoretical design of an experiment, a small capacity 
parameter is desirable to minimize the decrease in the permeation driving 

force. However, choosing a small capacity parameter is limited in actual 

experiments considering the presence of noise which causes significant data 
variability. Data variability is an inherent part of any measurement and 

impacts on the accurate determination of membrane properties. Therefore, in 

the design of time-lag experiments, researchers need to reconsider the 
recommendation of using a small capacity parameter in constant-volume 

membrane characterization experiments to obtain more accurate estimation of 

the time lag. In this investigation, four main types of errors were discussed: 
systematic errors from the experimental setup, random errors from the 

downstream pressure transducer, resolution errors from analogue-to-digital 

converter and extrapolation errors in the time-lag method. A comprehensive 
error analysis was presented in this paper to examine the impact of data 

variability on the determination of membrane properties using the time-lag 

method and nonlinear regression. 
Systematic errors are usually inherited in an experimental setup and do 

not change during an experiment. Careful calibration and accurate 

observation are the only ways to avoid systematic errors. Resolution errors 
are generated by the analogue-to-digital converter which converts the 

downstream pressure into a discrete signal. It is therefore important to resort 

to a high-resolution ADC and to ensure the recording system is able to read to 
such resolution. Random errors mainly come from the accuracy of the 

pressure transducer. Improving instrument accuracy is the best way to reduce 

uncertainty. Nevertheless, the availability of such accurate instrument might 
be limited. In this case, manipulating the capacity parameter and operational 

conditions need to be carefully considered to reduce uncertainties. Results 

showed that random and resolution errors are more significant for small gas 
accumulation rates, which can be alleviated by increasing the feed pressure p0 

or the capacity parameter η (i.e., decrease in the downstream volume Vd). 

Increasing p0 lowers the resolution error but has no effect on the random error. 
A judicious balance must exist between data precision, the drop in the 

pressure driving force and the duration of an experiment when choosing Vd 

and p0. Rarely discussed in the literature, the extrapolation error associated 
with the time-lag method using the pressure data that is affected by the other 

types of errors and noise. It increases with time and can be reduced by 
increasing the number of evaluation points NP and the length of the 

evaluation window W. However, a larger evaluation window may cause a 

distortion in the extrapolated time lag. 
Apart from the convenience and simplicity of the time lag method, it 

predicts the diffusivity coefficient without any correlation with the solubility 

coefficient. However, it uses only a subset of the downstream pressure data 
points to determine the time lag, neglecting the information outside the 

evaluation window. In comparison, the nonlinear regression can be used to 

determine membrane properties by minimizing the MSRE between the 
complete data set of experimental and predicted downstream pressure 

accumulation curves. However, it turns out that the very strong correlation 

between S and D impedes their accurate determination. It is suggested to use a 
combination of the time-lag method and nonlinear regression to accurately 

determine the individual membrane transport properties. In addition, the 

nonlinear regression method may be instrumental in the determination of 
more complex diffusion mechanisms such as partial immobilization model 

and non-instantaneous equilibrium model since the time-axis extrapolation 

from the pressure accumulation curve may have multi-plateaus and it does not 
directly indicate the time lag. 

Studies in this investigation were conducted assuming a constant 

diffusivity coefficient. However, this is not always the case, especially for 
glassy polymers. It is important to emphasize that even in the simplest case – 

membranes with constant diffusivity coefficient – all the four types of errors 

affecting the system will impact on the determination of the time lag which 
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may lead to the misinterpretation of the underlying model. Moreover, a 

careful selection of experimental conditions and proper data analysis will 

benefit not only the determination of the constant diffusivity coefficient but 
all time lag determination cases. Future studies may address the issue with a 

concentration-dependent diffusivity coefficient. 
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Nomenclature  

 

a Integer number of bits of the ADC (16 in this investigation). 

A Cross sectional membrane area, m2. 

C Gas concentration, mol/m3. 

D Diffusion coefficient, m2/s. 

L Membrane thickness, µm. 

LR Leak rate, Pa/s. 

n Number of time increments. 

NP Number of evaluation points in a selected window. 

Npd Number provided by the ADC corresponding to the noisy 

downstream pressure data. 

p0 Constant pressure in the upstream chamber, Pa. 

pu Upstream pressure change, Pa. 

pd Downstream pressure change, Pa. 

ˆ
dp  Predicted downstream pressure. 

P Permeability coefficient, mol·m/(m2·Pa·s). 

q Molar permeation rate, mol/s. 

R Gas constant, J/(K·mol). 

S Solubility coefficient, mol/(m3 ·Pa). 

t Simulation time, s. 

T Absolute temperature, K. 

Vu Upstream volume, m3. 

Vd Downstream volume, m3. 

W Evaluation time window, s. 

x Permeation distance, µm. 

pd Downstream pressure build up, Pa. 

 dp  Simulated downstream pressure build up with random noise, 

Pa. 

 dp  Simulated downstream pressure build up with random and 

resolution noise, Pa. 

t Simulation step, s. 

σ Standard deviation. 

μ Mean. 

δ(z)  Centered probability density function of a Gaussian random 

variable z. 

ɛ  Error between analytical results and numerical results. 

η Capacity parameter. 

d,t Downstream time lag, s. 

d Actual downstream time lag, s. 

 

 
Appendix 
 

Table A.1 

Simulation conditions and analysis parameters for Figures 2-3 and 5-10. 

Figure W (s) NP p0 (atm) η (×10-6) Vd (m
3)  (Pa) 

2 - 3 50 100 1 10 0.00279 0.0001, 0.001, 0.01 

5 50 100 0.1, 1, 10 10 0.00279 - 

6 50 100 1 1, 10, 100 
0.0279, 0.00279 

0.000279 
0.0001, 0.001, 0.01 

7 50 50,100,200 1 10 0.00279 0.001 

8 25, 50, 100 100 1 10 0.00279 0.001 

9 25, 50, 100, 150 100 1 10 0.00279 0.001 

10 - - 1 10 0.00279 - 

 

Membrane thickness L: 0.00003 m; Membrane area A: 0.00125m2; Upstream volume Vu: 8 ×10-5 m3; Temperature T: 293.15K; Diffusivity 

coefficient D: 4.2 ×10-12

 
m2/s; Solubility coefficient S: 3 ×10-4 mol/m3 Pa. 
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